These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 25311008)

  • 21. Molecule-dependent plasmonic enhancement of fluorescence and Raman scattering near realistic nanostructures.
    Kern AM; Meixner AJ; Martin OJ
    ACS Nano; 2012 Nov; 6(11):9828-36. PubMed ID: 23020510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum mechanical effects in plasmonic structures with subnanometre gaps.
    Zhu W; Esteban R; Borisov AG; Baumberg JJ; Nordlander P; Lezec HJ; Aizpurua J; Crozier KB
    Nat Commun; 2016 Jun; 7():11495. PubMed ID: 27255556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering.
    Cheng HH; Chen SW; Chang YY; Chu JY; Lin DZ; Chen YP; Li JH
    Opt Express; 2011 Oct; 19(22):22125-41. PubMed ID: 22109056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic enhancement of SERS measured on molecules in carbon nanotubes.
    Mueller NS; Heeg S; Kusch P; Gaufrès E; Tang NY; Hübner U; Martel R; Vijayaraghavan A; Reich S
    Faraday Discuss; 2017 Dec; 205():85-103. PubMed ID: 28914310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A generalized non-local optical response theory for plasmonic nanostructures.
    Mortensen NA; Raza S; Wubs M; Søndergaard T; Bozhevolnyi SI
    Nat Commun; 2014 May; 5():3809. PubMed ID: 24787630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmonic Nanogels for Unclonable Optical Tagging.
    Tian L; Liu KK; Fei M; Tadepalli S; Cao S; Geldmeier JA; Tsukruk VV; Singamaneni S
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4031-41. PubMed ID: 26812528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical rectification and field enhancement in a plasmonic nanogap.
    Ward DR; Hüser F; Pauly F; Cuevas JC; Natelson D
    Nat Nanotechnol; 2010 Oct; 5(10):732-6. PubMed ID: 20852641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of optical processes in coupled plasmonic nanocavities [Invited].
    Genevet P; Tetienne JP; Blanchard R; Kats MA; Müller JP; Scully MO; Capasso F
    Appl Opt; 2011 Nov; 50(31):G56-62. PubMed ID: 22086048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation.
    Hajisalem G; Nezami MS; Gordon R
    Nano Lett; 2014 Nov; 14(11):6651-4. PubMed ID: 25322471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics.
    Gwo S; Chen HY; Lin MH; Sun L; Li X
    Chem Soc Rev; 2016 Oct; 45(20):5672-5716. PubMed ID: 27406697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tracking Optical and Electronic Behaviour of Quantum Contacts in Sub-Nanometre Plasmonic Cavities.
    Sanders A; Bowman RW; Baumberg JJ
    Sci Rep; 2016 Sep; 6():32988. PubMed ID: 27608825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer.
    Lin L; Zapata M; Xiong M; Liu Z; Wang S; Xu H; Borisov AG; Gu H; Nordlander P; Aizpurua J; Ye J
    Nano Lett; 2015 Oct; 15(10):6419-28. PubMed ID: 26375710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas.
    Yang L; Wang H; Fang Y; Li Z
    ACS Nano; 2016 Jan; 10(1):1580-8. PubMed ID: 26700823
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion.
    Caldarola M; Albella P; Cortés E; Rahmani M; Roschuk T; Grinblat G; Oulton RF; Bragas AV; Maier SA
    Nat Commun; 2015 Aug; 6():7915. PubMed ID: 26238815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmonic metal nanostructures with extremely small features: new effects, fabrication and applications.
    Shi H; Zhu X; Zhang S; Wen G; Zheng M; Duan H
    Nanoscale Adv; 2021 Jul; 3(15):4349-4369. PubMed ID: 36133477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic radiance: probing structure at the Ångström scale with visible light.
    Gallinet B; Siegfried T; Sigg H; Nordlander P; Martin OJ
    Nano Lett; 2013 Feb; 13(2):497-503. PubMed ID: 23273336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering.
    Roelli P; Galland C; Piro N; Kippenberg TJ
    Nat Nanotechnol; 2016 Feb; 11(2):164-9. PubMed ID: 26595330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance.
    Zhang Y; Zhen YR; Neumann O; Day JK; Nordlander P; Halas NJ
    Nat Commun; 2014 Jul; 5():4424. PubMed ID: 25020075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum Plasmonics: Energy Transport Through Plasmonic Gap.
    Lee J; Jeon DJ; Yeo JS
    Adv Mater; 2021 Nov; 33(47):e2006606. PubMed ID: 33891781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.