These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25311105)

  • 21. Thermoelectric properties and efficiency measurements under large temperature differences.
    Muto A; Kraemer D; Hao Q; Ren ZF; Chen G
    Rev Sci Instrum; 2009 Sep; 80(9):093901. PubMed ID: 19791947
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between thermoelectric figure of merit and energy conversion efficiency.
    Kim HS; Liu W; Chen G; Chu CW; Ren Z
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8205-10. PubMed ID: 26100905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Si-Based Materials for Thermoelectric Applications.
    Tanusilp SA; Kurosaki K
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31212898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The strong thermoelectric effect in nanocarbon generated by the ballistic phonon drag of electrons.
    Eidelman ED; Vul' AY
    J Phys Condens Matter; 2007 Jul; 19(26):266210. PubMed ID: 21694087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High temperature Z-meter setup for characterizing thermoelectric material under large temperature gradient.
    Amatya R; Mayer PM; Ram RJ
    Rev Sci Instrum; 2012 Jul; 83(7):075117. PubMed ID: 22852734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superionic adjustment leading to weakly temperature-dependent ZT values in bulk thermoelectrics.
    Chen H; Lin H; Lin ZX; Shen JN; Chen L; Wu LM
    Inorg Chem; 2015 Feb; 54(3):867-71. PubMed ID: 25418200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High thermoelectric figure of merit of porous Si nanowires from 300 to 700 K.
    Yang L; Huh D; Ning R; Rapp V; Zeng Y; Liu Y; Ju S; Tao Y; Jiang Y; Beak J; Leem J; Kaur S; Lee H; Zheng X; Prasher RS
    Nat Commun; 2021 Jun; 12(1):3926. PubMed ID: 34168136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Significant enhancement in thermoelectric performance of nanostructured higher manganese silicides synthesized employing a melt spinning technique.
    Muthiah S; Singh RC; Pathak BD; Avasthi PK; Kumar R; Kumar A; Srivastava AK; Dhar A
    Nanoscale; 2018 Jan; 10(4):1970-1977. PubMed ID: 29319087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures.
    Zhao LD; Lo SH; He J; Li H; Biswas K; Androulakis J; Wu CI; Hogan TP; Chung DY; Dravid VP; Kanatzidis MG
    J Am Chem Soc; 2011 Dec; 133(50):20476-87. PubMed ID: 22126301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoscale Texturing and Interfaces in Compositionally Modified Ca
    Song ME; Lee H; Kang MG; Li W; Maurya D; Poudel B; Wang J; Meeker MA; Khodaparast GA; Huxtable ST; Priya S
    ACS Omega; 2018 Sep; 3(9):10798-10810. PubMed ID: 31459194
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials.
    Poudeu PF; D'Angelo J; Kong H; Downey A; Short JL; Pcionek R; Hogan TP; Uher C; Kanatzidis MG
    J Am Chem Soc; 2006 Nov; 128(44):14347-55. PubMed ID: 17076508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks.
    Ma Y; Hao Q; Poudel B; Lan Y; Yu B; Wang D; Chen G; Ren Z
    Nano Lett; 2008 Aug; 8(8):2580-4. PubMed ID: 18624384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective Scatterings of Phonons and Electrons in Defective Half-Heusler Nb
    Gao Z; Xia K; Nan P; Yin L; Hu C; Li A; Han S; Zhang M; Chen M; Ge B; Zhang Q; Fu C; Zhu T
    Small; 2023 Sep; 19(39):e2302457. PubMed ID: 37263990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nano-inclusions: a novel approach to tune the thermal conductivity of In2O3.
    Xu W; Liu Y; Chen B; Liu DB; Lin YH; Marcelli A
    Phys Chem Chem Phys; 2013 Oct; 15(40):17595-600. PubMed ID: 24037115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermoelectric efficiency in nanojunctions: a comparison between atomic junctions and molecular junctions.
    Liu YS; Chen YR; Chen YC
    ACS Nano; 2009 Nov; 3(11):3497-504. PubMed ID: 19888717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites.
    Xie W; He J; Kang HJ; Tang X; Zhu S; Laver M; Wang S; Copley JR; Brown CM; Zhang Q; Tritt TM
    Nano Lett; 2010 Sep; 10(9):3283-9. PubMed ID: 20687520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanostructures boost the thermoelectric performance of PbS.
    Johnsen S; He J; Androulakis J; Dravid VP; Todorov I; Chung DY; Kanatzidis MG
    J Am Chem Soc; 2011 Mar; 133(10):3460-70. PubMed ID: 21332121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures.
    Girard SN; He J; Zhou X; Shoemaker D; Jaworski CM; Uher C; Dravid VP; Heremans JP; Kanatzidis MG
    J Am Chem Soc; 2011 Oct; 133(41):16588-97. PubMed ID: 21902270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced Thermoelectric Performance in n-Type SrTiO
    Wang J; Li JB; Yu HY; Li J; Yang H; Yaer X; Wang XH; Liu HM
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2687-2694. PubMed ID: 31860262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement in thermoelectric performance of SiGe nanoalloys dispersed with SiC nanoparticles.
    Bathula S; Jayasimhadri M; Gahtori B; Kumar A; Srivastava AK; Dhar A
    Phys Chem Chem Phys; 2017 Sep; 19(36):25180-25185. PubMed ID: 28884765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.