BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25311124)

  • 1. Purification of specific chromatin loci for proteomic analysis.
    Byrum SD; Taverna SD; Tackett AJ
    Methods Mol Biol; 2015; 1228():83-92. PubMed ID: 25311124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification of a specific native genomic locus for proteomic analysis.
    Byrum SD; Taverna SD; Tackett AJ
    Nucleic Acids Res; 2013 Nov; 41(20):e195. PubMed ID: 24030711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus.
    Byrum SD; Raman A; Taverna SD; Tackett AJ
    Cell Rep; 2012 Jul; 2(1):198-205. PubMed ID: 22840409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CRISPR-based approach for proteomic analysis of a single genomic locus.
    Waldrip ZJ; Byrum SD; Storey AJ; Gao J; Byrd AK; Mackintosh SG; Wahls WP; Taverna SD; Raney KD; Tackett AJ
    Epigenetics; 2014 Sep; 9(9):1207-11. PubMed ID: 25147920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic identification of histone post-translational modifications and proteins enriched at a DNA double-strand break.
    Wang P; Byrum S; Fowler FC; Pal S; Tackett AJ; Tyler JK
    Nucleic Acids Res; 2017 Nov; 45(19):10923-10940. PubMed ID: 29036368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modification in Saccharomyces cerevisiae.
    Valero ML; Sendra R; Pamblanco M
    J Proteomics; 2016 Mar; 136():183-92. PubMed ID: 26778144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global proteomic analysis of Saccharomyces cerevisiae identifies molecular pathways of histone modifications.
    Jackson J; Shilatifard A
    Methods Mol Biol; 2009; 548():175-86. PubMed ID: 19521825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of In Vivo Protein Binding Affinities in a Signaling Network with Mass Spectrometry.
    Gencoglu M; Schmidt A; Becskei A
    ACS Synth Biol; 2017 Jul; 6(7):1305-1314. PubMed ID: 28333434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of RNA Polymerase I-Associated Chromatin from Yeast Cells.
    Bruckmann A; Linnemann J; Perez-Fernandez J
    Methods Mol Biol; 2016; 1455():213-23. PubMed ID: 27576721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of specific chromatin domains from single-copy gene loci in Saccharomyces cerevisiae.
    Hamperl S; Brown CR; Perez-Fernandez J; Huber K; Wittner M; Babl V; Stöckl U; Boeger H; Tschochner H; Milkereit P; Griesenbeck J
    Methods Mol Biol; 2014; 1094():329-41. PubMed ID: 24163000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HyCCAPP as a tool to characterize promoter DNA-protein interactions in Saccharomyces cerevisiae.
    Guillen-Ahlers H; Rao PK; Levenstein ME; Kennedy-Darling J; Perumalla DS; Jadhav AY; Glenn JP; Ludwig-Kubinski A; Drigalenko E; Montoya MJ; Göring HH; Anderson CD; Scalf M; Gildersleeve HI; Cole R; Greene AM; Oduro AK; Lazarova K; Cesnik AJ; Barfknecht J; Cirillo LA; Gasch AP; Shortreed MR; Smith LM; Olivier M
    Genomics; 2016 Jun; 107(6):267-73. PubMed ID: 27184763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical Guidelines for co-fractionation Mass Spectrometry Obtained through Global Profiling of Gold Standard
    Pang CNI; Ballouz S; Weissberger D; Thibaut LM; Hamey JJ; Gillis J; Wilkins MR; Hart-Smith G
    Mol Cell Proteomics; 2020 Nov; 19(11):1876-1895. PubMed ID: 32817346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Affinity purification of specific chromatin segments from chromosomal loci in yeast.
    Griesenbeck J; Boeger H; Strattan JS; Kornberg RD
    Mol Cell Biol; 2003 Dec; 23(24):9275-82. PubMed ID: 14645537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Substrates of Protein-Group SUMOylation.
    Psakhye I; Jentsch S
    Methods Mol Biol; 2016; 1475():219-31. PubMed ID: 27631809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic characterization of the arsenic response locus in S. cerevisiae.
    West KL; Byrum SD; Mackintosh SG; Edmondson RD; Taverna SD; Tackett AJ
    Epigenetics; 2019 Feb; 14(2):130-145. PubMed ID: 30739529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome Characterization of a Chromatin Locus Using the Proteomics of Isolated Chromatin Segments Approach.
    Kan SL; Saksouk N; Déjardin J
    Methods Mol Biol; 2017; 1550():19-33. PubMed ID: 28188520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of histone posttranslational modifications from nucleolus-associated chromatin by mass spectrometry.
    Dillinger S; Garea AV; Deutzmann R; Németh A
    Methods Mol Biol; 2014; 1094():277-93. PubMed ID: 24162996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contribution of mass spectrometry-based proteomics to understanding epigenetics.
    Noberini R; Sigismondo G; Bonaldi T
    Epigenomics; 2016 Mar; 8(3):429-45. PubMed ID: 26606673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global reorganization of budding yeast chromosome conformation in different physiological conditions.
    Dultz E; Tjong H; Weider E; Herzog M; Young B; Brune C; Müllner D; Loewen C; Alber F; Weis K
    J Cell Biol; 2016 Feb; 212(3):321-34. PubMed ID: 26811423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexed Sequence-Specific Capture of Chromatin and Mass Spectrometric Discovery of Associated Proteins.
    Dai Y; Kennedy-Darling J; Shortreed MR; Scalf M; Gasch AP; Smith LM
    Anal Chem; 2017 Aug; 89(15):7841-7846. PubMed ID: 28654248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.