These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25311124)

  • 21. General method for rapid purification of native chromatin fragments.
    Kuznetsov VI; Haws SA; Fox CA; Denu JM
    J Biol Chem; 2018 Aug; 293(31):12271-12282. PubMed ID: 29794135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histone Chaperone Nap1 Is a Major Regulator of Histone H2A-H2B Dynamics at the Inducible GAL Locus.
    Chen X; D'Arcy S; Radebaugh CA; Krzizike DD; Giebler HA; Huang L; Nyborg JK; Luger K; Stargell LA
    Mol Cell Biol; 2016 Apr; 36(8):1287-96. PubMed ID: 26884462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ChroP approach combines ChIP and mass spectrometry to dissect locus-specific proteomic landscapes of chromatin.
    Soldi M; Bonaldi T
    J Vis Exp; 2014 Apr; (86):. PubMed ID: 24747196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative proteomic analysis of yeast DNA replication proteins.
    Kubota T; Stead DA; Hiraga S; ten Have S; Donaldson AD
    Methods; 2012 Jun; 57(2):196-202. PubMed ID: 22465796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advanced methods for the analysis of chromatin-associated proteins.
    Guillen-Ahlers H; Shortreed MR; Smith LM; Olivier M
    Physiol Genomics; 2014 Jul; 46(13):441-7. PubMed ID: 24803678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The proteomic investigation of chromatin functional domains reveals novel synergisms among distinct heterochromatin components.
    Soldi M; Bonaldi T
    Mol Cell Proteomics; 2013 Mar; 12(3):764-80. PubMed ID: 23319141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteomic and genomic characterization of chromatin complexes at a boundary.
    Tackett AJ; Dilworth DJ; Davey MJ; O'Donnell M; Aitchison JD; Rout MP; Chait BT
    J Cell Biol; 2005 Apr; 169(1):35-47. PubMed ID: 15824130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unravelling the biology of chromatin in health and cancer using proteomic approaches.
    Eubanks CG; Dayebgadoh G; Liu X; Washburn MP
    Expert Rev Proteomics; 2017 Oct; 14(10):905-915. PubMed ID: 28895440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epigenetic Transcriptional Memory of
    Sood V; Cajigas I; D'Urso A; Light WH; Brickner JH
    Genetics; 2017 Aug; 206(4):1895-1907. PubMed ID: 28607146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel proteomics approach for the discovery of chromatin-associated protein networks.
    Lambert JP; Mitchell L; Rudner A; Baetz K; Figeys D
    Mol Cell Proteomics; 2009 Apr; 8(4):870-82. PubMed ID: 19106085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochemical systems approaches for the analysis of histone modification readout.
    Soldi M; Bremang M; Bonaldi T
    Biochim Biophys Acta; 2014 Aug; 1839(8):657-68. PubMed ID: 24681439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic analysis of linker histone PTM hotspots reveals phosphorylation sites that modulate homologous recombination and DSB repair.
    Mukherjee K; English N; Meers C; Kim H; Jonke A; Storici F; Torres M
    DNA Repair (Amst); 2020 Feb; 86():102763. PubMed ID: 31821952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Of proteins and DNA--proteomic role in the field of chromatin research.
    Lambert JP; Baetz K; Figeys D
    Mol Biosyst; 2010 Jan; 6(1):30-7. PubMed ID: 20024064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae.
    Tsukuda T; Fleming AB; Nickoloff JA; Osley MA
    Nature; 2005 Nov; 438(7066):379-83. PubMed ID: 16292314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cks1 enhances transcription efficiency at the GAL1 locus by linking the Paf1 complex to the 19S proteasome.
    Pan YR; Sun M; Wohlschlegel J; Reed SI
    Eukaryot Cell; 2013 Sep; 12(9):1192-201. PubMed ID: 23825181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the Nucleolar Localization of the RENT Complex to Ribosomal DNA by Chromatin Immunoprecipitation Assays.
    Huang J; Iglesias N; Moazed D
    Methods Mol Biol; 2017; 1505():195-213. PubMed ID: 27826866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of newly translated thermo-sensitive proteins using pulse SILAC mass spectrometry and the GAL promoter system.
    Zhu M; Calabrese G; Wong RWK; Mayor T
    STAR Protoc; 2023 Mar; 4(1):102059. PubMed ID: 36853680
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteomic analysis demonstrates activator- and chromatin-specific recruitment to promoters.
    Sikorski TW; Joo YJ; Ficarro SB; Askenazi M; Buratowski S; Marto JA
    J Biol Chem; 2012 Oct; 287(42):35397-35408. PubMed ID: 22902623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae.
    Czaja W; Mao P; Smerdon MJ
    DNA Repair (Amst); 2014 Apr; 16():35-43. PubMed ID: 24674626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using chromatin immunoprecipitation to map cotranscriptional mRNA processing in Saccharomyces cerevisiae.
    Keogh MC; Buratowski S
    Methods Mol Biol; 2004; 257():1-16. PubMed ID: 14769992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.