These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 25311223)

  • 1. Uncovering the volatile nature of tropical coastal marine ecosystems in a changing world.
    Exton DA; McGenity TJ; Steinke M; Smith DJ; Suggett DJ
    Glob Chang Biol; 2015 Apr; 21(4):1383-94. PubMed ID: 25311223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Warming increases isoprene emissions from an arctic fen.
    Lindwall F; Svendsen SS; Nielsen CS; Michelsen A; Rinnan R
    Sci Total Environ; 2016 May; 553():297-304. PubMed ID: 26933965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars.
    Rosenkranz M; Pugh TA; Schnitzler JP; Arneth A
    Plant Cell Environ; 2015 Sep; 38(9):1896-912. PubMed ID: 25255900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: determination of specific emission rates for thirty-one tree species.
    Aydin YM; Yaman B; Koca H; Dasdemir O; Kara M; Altiok H; Dumanoglu Y; Bayram A; Tolunay D; Odabasi M; Elbir T
    Sci Total Environ; 2014 Aug; 490():239-53. PubMed ID: 24858222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isoprene emission from the forest of Haryana state.
    Singh AP; Varshney CK
    Environ Monit Assess; 2006 Nov; 122(1-3):145-51. PubMed ID: 16738764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient.
    Svendsen SH; Lindwall F; Michelsen A; Rinnan R
    Sci Total Environ; 2016 Dec; 573():131-138. PubMed ID: 27552736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat stress decreases the diversity, abundance and functional potential of coral gas emissions.
    Lawson CA; Raina JB; Deschaseaux E; Hrebien V; Possell M; Seymour JR; Suggett DJ
    Glob Chang Biol; 2021 Feb; 27(4):879-891. PubMed ID: 33253484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amazonian biogenic volatile organic compounds under global change.
    Yáñez-Serrano AM; Bourtsoukidis E; Alves EG; Bauwens M; Stavrakou T; Llusià J; Filella I; Guenther A; Williams J; Artaxo P; Sindelarova K; Doubalova J; Kesselmeier J; Peñuelas J
    Glob Chang Biol; 2020 Sep; 26(9):4722-4751. PubMed ID: 32445424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA).
    Seco R; Karl T; Guenther A; Hosman KP; Pallardy SG; Gu L; Geron C; Harley P; Kim S
    Glob Chang Biol; 2015 Oct; 21(10):3657-74. PubMed ID: 25980459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant volatiles in extreme terrestrial and marine environments.
    Rinnan R; Steinke M; McGenity T; Loreto F
    Plant Cell Environ; 2014 Aug; 37(8):1776-89. PubMed ID: 24601952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative determination of biogenic volatile organic compounds in the atmosphere using proton-transfer reaction linear ion trap mass spectrometry.
    Mielke LH; Pratt KA; Shepson PB; McLuckey SA; Wisthaler A; Hansel A
    Anal Chem; 2010 Oct; 82(19):7952-7. PubMed ID: 20822166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isoprene Emissions and Ozone Formation in Urban Conditions: A Case Study in the City of Rio de Janeiro.
    da Silva CM; Corrêa SM; Arbilla G
    Bull Environ Contam Toxicol; 2018 Jan; 100(1):184-188. PubMed ID: 29236157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trade-Off Between Dimethyl Sulfide and Isoprene Emissions from Marine Phytoplankton.
    Dani KGS; Loreto F
    Trends Plant Sci; 2017 May; 22(5):361-372. PubMed ID: 28242195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photochemical modeling of the Ozark isoprene volcano: MEGAN, BEIS, and their impacts on air quality predictions.
    Carlton AG; Baker KR
    Environ Sci Technol; 2011 May; 45(10):4438-45. PubMed ID: 21520901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions.
    Valolahti H; Kivimäenpää M; Faubert P; Michelsen A; Rinnan R
    Glob Chang Biol; 2015 Sep; 21(9):3478-88. PubMed ID: 25994223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant volatiles and the environment.
    Loreto F; Dicke M; Schnitzler JP; Turlings TC
    Plant Cell Environ; 2014 Aug; 37(8):1905-8. PubMed ID: 24811745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms and ecological role of carbon transfer within coastal seascapes.
    Hyndes GA; Nagelkerken I; McLeod RJ; Connolly RM; Lavery PS; Vanderklift MA
    Biol Rev Camb Philos Soc; 2014 Feb; 89(1):232-54. PubMed ID: 23980752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BVOCs and global change.
    Peñuelas J; Staudt M
    Trends Plant Sci; 2010 Mar; 15(3):133-44. PubMed ID: 20097116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of Climate Change and Herbivory to Affect the Release and Atmospheric Reactions of BVOCs from Boreal and Subarctic Forests.
    Yu H; Holopainen JK; Kivimäenpää M; Virtanen A; Blande JD
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kenya.
    Obura DO
    Mar Pollut Bull; 2001 Dec; 42(12):1264-78. PubMed ID: 11827110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.