These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 25311389)

  • 1. Eye movements and manual interception of ballistic trajectories: effects of law of motion perturbations and occlusions.
    Delle Monache S; Lacquaniti F; Bosco G
    Exp Brain Res; 2015 Feb; 233(2):359-74. PubMed ID: 25311389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catching what we can't see: manual interception of occluded fly-ball trajectories.
    Bosco G; Delle Monache S; Lacquaniti F
    PLoS One; 2012; 7(11):e49381. PubMed ID: 23166653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential contributions to the interception of occluded ballistic trajectories by the temporoparietal junction, area hMT/V5+, and the intraparietal cortex.
    Delle Monache S; Lacquaniti F; Bosco G
    J Neurophysiol; 2017 Sep; 118(3):1809-1823. PubMed ID: 28701531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ocular tracking of occluded ballistic trajectories: Effects of visual context and of target law of motion.
    Delle Monache S; Lacquaniti F; Bosco G
    J Vis; 2019 Apr; 19(4):13. PubMed ID: 30952164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive elements in ocular interception and tracking of a moving target by untrained cats.
    Klam F; Petit J; Grantyn A; Berthoz A
    Exp Brain Res; 2001 Jul; 139(2):233-47. PubMed ID: 11497066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Updating visual memory across eye movements for ocular and arm motor control.
    Thompson AA; Henriques DY
    J Neurophysiol; 2008 Nov; 100(5):2507-14. PubMed ID: 18768640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual signals contribute to the coding of gaze direction.
    Blouin J; Amade N; Vercher JL; Teasdale N; Gauthier GM
    Exp Brain Res; 2002 Jun; 144(3):281-92. PubMed ID: 12021810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Models for the extrapolation of target motion for manual interception.
    Soechting JF; Juveli JZ; Rao HM
    J Neurophysiol; 2009 Sep; 102(3):1491-502. PubMed ID: 19571194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive strategies in interception tasks: differences between eye and hand movements.
    Eggert T; Rivas F; Straube A
    Exp Brain Res; 2005 Jan; 160(4):433-49. PubMed ID: 15551090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constraints on the spatiotemporal accuracy of interceptive action: effects of target size on hitting a moving target.
    Tresilian JR; Plooy A; Carroll TJ
    Exp Brain Res; 2004 Apr; 155(4):509-26. PubMed ID: 14999437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sources of variability in interceptive movements.
    Brenner E; Smeets JB
    Exp Brain Res; 2009 May; 195(1):117-33. PubMed ID: 19283369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-field visual motion directly induces an involuntary rapid manual following response.
    Saijo N; Murakami I; Nishida S; Gomi H
    J Neurosci; 2005 May; 25(20):4941-51. PubMed ID: 15901775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of prediction and visual tracking strategies during manual interception: An exploration of individual differences.
    Arthur T; Vine S; Wilson M; Harris D
    J Vis; 2024 Jun; 24(6):4. PubMed ID: 38842836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Memory and prediction in natural gaze control.
    Diaz G; Cooper J; Hayhoe M
    Philos Trans R Soc Lond B Biol Sci; 2013 Oct; 368(1628):20130064. PubMed ID: 24018726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of eye movements in manual interception: A mini-review.
    Fooken J; Kreyenmeier P; Spering M
    Vision Res; 2021 Jun; 183():81-90. PubMed ID: 33743442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preservation of Eye Movements in Parkinson's Disease Is Stimulus- and Task-Specific.
    Fooken J; Patel P; Jones CB; McKeown MJ; Spering M
    J Neurosci; 2022 Jan; 42(3):487-499. PubMed ID: 34848498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The predictability of a target's motion influences gaze, head, and hand movements when trying to intercept it.
    de la Malla C; Rushton SK; Clark K; Smeets JBJ; Brenner E
    J Neurophysiol; 2019 Jun; 121(6):2416-2427. PubMed ID: 31042444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The quantitative use of velocity information in fast interception.
    de Lussanet MH; Smeets JB; Brenner E
    Exp Brain Res; 2004 Jul; 157(2):181-96. PubMed ID: 14991210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eye Tracking of Occluded Self-Moved Targets: Role of Haptic Feedback and Hand-Target Dynamics.
    Danion F; Mathew J; Flanagan JR
    eNeuro; 2017; 4(3):. PubMed ID: 28680964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic changes in the duration and precision of interception in response to variation of amplitude and effector size.
    Tresilian JR; Plooy A
    Exp Brain Res; 2006 Jun; 171(4):421-35. PubMed ID: 16307234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.