BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25311416)

  • 1. Activation of C6 glioblastoma cell ceruloplasmin expression by neighboring human brain endothelia-derived interleukins in an in vitro blood-brain barrier model system.
    McCarthy RC; Kosman DJ
    Cell Commun Signal; 2014 Oct; 12():65. PubMed ID: 25311416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells.
    McCarthy RC; Kosman DJ
    PLoS One; 2014; 9(2):e89003. PubMed ID: 24533165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferroportin and exocytoplasmic ferroxidase activity are required for brain microvascular endothelial cell iron efflux.
    McCarthy RC; Kosman DJ
    J Biol Chem; 2013 Jun; 288(24):17932-40. PubMed ID: 23640881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interleukin-1beta up-regulates iron efflux in rat C6 glioma cells through modulation of ceruloplasmin and ferroportin-1 synthesis.
    di Patti MC; Persichini T; Mazzone V; Polticelli F; Colasanti M; Musci G
    Neurosci Lett; 2004 Jun; 363(2):182-6. PubMed ID: 15172111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interleukin-1β induces ceruloplasmin and ferroportin-1 gene expression via MAP kinases and C/EBPβ, AP-1, and NF-κB activation.
    Persichini T; Maio N; di Patti MC; Rizzo G; Toscano S; Colasanti M; Musci G
    Neurosci Lett; 2010 Oct; 484(2):133-8. PubMed ID: 20727382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin.
    McCarthy RC; Park YH; Kosman DJ
    EMBO Rep; 2014 Jul; 15(7):809-15. PubMed ID: 24867889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumour necrosis factor-α-mediated disruption of cerebrovascular endothelial barrier integrity in vitro involves the production of proinflammatory interleukin-6.
    Rochfort KD; Collins LE; McLoughlin A; Cummins PM
    J Neurochem; 2016 Feb; 136(3):564-72. PubMed ID: 26499872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vitro blood-brain barrier model combining shear stress and endothelial cell/astrocyte co-culture.
    Takeshita Y; Obermeier B; Cotleur A; Sano Y; Kanda T; Ransohoff RM
    J Neurosci Methods; 2014 Jul; 232():165-72. PubMed ID: 24858797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic analysis of iron accumulation by endothelial cells of the BBB.
    McCarthy RC; Kosman DJ
    Biometals; 2012 Aug; 25(4):665-75. PubMed ID: 22434419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The iron chelator, PBT434, modulates transcellular iron trafficking in brain microvascular endothelial cells.
    Bailey DK; Clark W; Kosman DJ
    PLoS One; 2021; 16(7):e0254794. PubMed ID: 34310628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.
    Díaz-Coránguez M; Segovia J; López-Ornelas A; Puerta-Guardo H; Ludert J; Chávez B; Meraz-Cruz N; González-Mariscal L
    PLoS One; 2013; 8(4):e60655. PubMed ID: 23637756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of interleukin-1 across cerebromicrovascular endothelial cells.
    Skinner RA; Gibson RM; Rothwell NJ; Pinteaux E; Penny JI
    Br J Pharmacol; 2009 Apr; 156(7):1115-23. PubMed ID: 19298391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific increase in MDR1 mediated drug-efflux in human brain endothelial cells following co-exposure to HIV-1 and saquinavir.
    Roy U; Bulot C; Honer zu Bentrup K; Mondal D
    PLoS One; 2013; 8(10):e75374. PubMed ID: 24098380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of TNF-alpha mRNA production in rat C6 glioma cells by TNF-alpha, IL-1beta, IL-6, and IFN-alpha: in vitro analysis of cytokine-cytokine interactions.
    Gayle D; Ilyin SE; Miele ME; Plata-Salamán CR
    Brain Res Bull; 1998 Oct; 47(3):231-5. PubMed ID: 9865855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleukin-1beta and catecholamines synergistically stimulate interleukin-6 release from rat C6 glioma cells in vitro: a potential role for lysophosphatidylcholine.
    Zumwalt JW; Thunstrom BJ; Spangelo BL
    Endocrinology; 1999 Feb; 140(2):888-96. PubMed ID: 9927320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glioma-secreted soluble factors stimulate microglial activation: The role of interleukin-1β and tumor necrosis factor-α.
    Hwang JS; Jung EH; Kwon MY; Han IO
    J Neuroimmunol; 2016 Sep; 298():165-71. PubMed ID: 27609291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of Iron-Related Proteins at the Neurovascular Unit Supports Reduction and Reoxidation of Iron for Transport Through the Blood-Brain Barrier.
    Burkhart A; Skjørringe T; Johnsen KB; Siupka P; Thomsen LB; Nielsen MS; Thomsen LL; Moos T
    Mol Neurobiol; 2016 Dec; 53(10):7237-7253. PubMed ID: 26687231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy.
    McCarthy RC; Kosman DJ
    Cell Mol Life Sci; 2015 Feb; 72(4):709-27. PubMed ID: 25355056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein kinase C-delta inhibition protects blood-brain barrier from sepsis-induced vascular damage.
    Tang Y; Soroush F; Sun S; Liverani E; Langston JC; Yang Q; Kilpatrick LE; Kiani MF
    J Neuroinflammation; 2018 Nov; 15(1):309. PubMed ID: 30400800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eicosapentaenoic acid inhibits interleukin-6 production in interleukin-1beta-stimulated C6 glioma cells through peroxisome proliferator-activated receptor-gamma.
    Kawashima A; Harada T; Imada K; Yano T; Mizuguchi K
    Prostaglandins Leukot Essent Fatty Acids; 2008; 79(1-2):59-65. PubMed ID: 18762411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.