These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 25311542)
1. Effects of copper on CHO cells: cellular requirements and product quality considerations. Yuk IH; Russell S; Tang Y; Hsu WT; Mauger JB; Aulakh RP; Luo J; Gawlitzek M; Joly JC Biotechnol Prog; 2015; 31(1):226-38. PubMed ID: 25311542 [TBL] [Abstract][Full Text] [Related]
2. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism. Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321 [TBL] [Abstract][Full Text] [Related]
3. Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Luo J; Vijayasankaran N; Autsen J; Santuray R; Hudson T; Amanullah A; Li F Biotechnol Bioeng; 2012 Jan; 109(1):146-56. PubMed ID: 21964570 [TBL] [Abstract][Full Text] [Related]
4. Lactate metabolism shift in CHO cell culture: the role of mitochondrial oxidative activity. Zagari F; Jordan M; Stettler M; Broly H; Wurm FM N Biotechnol; 2013 Jan; 30(2):238-45. PubMed ID: 22683938 [TBL] [Abstract][Full Text] [Related]
5. Feeding lactate for CHO cell culture processes: impact on culture metabolism and performance. Li J; Wong CL; Vijayasankaran N; Hudson T; Amanullah A Biotechnol Bioeng; 2012 May; 109(5):1173-86. PubMed ID: 22124879 [TBL] [Abstract][Full Text] [Related]
6. Utilization of tyrosine- and histidine-containing dipeptides to enhance productivity and culture viability. Kang S; Mullen J; Miranda LP; Deshpande R Biotechnol Bioeng; 2012 Sep; 109(9):2286-94. PubMed ID: 22447498 [TBL] [Abstract][Full Text] [Related]
7. Effects of copper on CHO cells: insights from gene expression analyses. Yuk IH; Zhang JD; Ebeling M; Berrera M; Gomez N; Werz S; Meiringer C; Shao Z; Swanberg JC; Lee KH; Luo J; Szperalski B Biotechnol Prog; 2014; 30(2):429-42. PubMed ID: 24403277 [TBL] [Abstract][Full Text] [Related]
8. Improving lactate metabolism in an intensified CHO culture process: productivity and product quality considerations. Xu S; Hoshan L; Chen H Bioprocess Biosyst Eng; 2016 Nov; 39(11):1689-702. PubMed ID: 27324235 [TBL] [Abstract][Full Text] [Related]
9. Comparative phenotypic analysis of CHO clones and culture media for lactate shift. Hong JK; Nargund S; Lakshmanan M; Kyriakopoulos S; Kim DY; Ang KS; Leong D; Yang Y; Lee DY J Biotechnol; 2018 Oct; 283():97-104. PubMed ID: 30076878 [TBL] [Abstract][Full Text] [Related]
10. Multivariate analysis of cell culture bioprocess data--lactate consumption as process indicator. Le H; Kabbur S; Pollastrini L; Sun Z; Mills K; Johnson K; Karypis G; Hu WS J Biotechnol; 2012 Dec; 162(2-3):210-23. PubMed ID: 22974585 [TBL] [Abstract][Full Text] [Related]
11. High-end pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed-batch cultures. Gagnon M; Hiller G; Luan YT; Kittredge A; DeFelice J; Drapeau D Biotechnol Bioeng; 2011 Jun; 108(6):1328-37. PubMed ID: 21328318 [TBL] [Abstract][Full Text] [Related]
12. Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases. Zhou M; Crawford Y; Ng D; Tung J; Pynn AF; Meier A; Yuk IH; Vijayasankaran N; Leach K; Joly J; Snedecor B; Shen A J Biotechnol; 2011 Apr; 153(1-2):27-34. PubMed ID: 21392546 [TBL] [Abstract][Full Text] [Related]
13. Benchmarking of commercially available CHO cell culture media for antibody production. Reinhart D; Damjanovic L; Kaisermayer C; Kunert R Appl Microbiol Biotechnol; 2015 Jun; 99(11):4645-57. PubMed ID: 25846330 [TBL] [Abstract][Full Text] [Related]
14. Expression of anti-apoptosis genes alters lactate metabolism of Chinese Hamster Ovary cells in culture. Dorai H; Kyung YS; Ellis D; Kinney C; Lin C; Jan D; Moore G; Betenbaugh MJ Biotechnol Bioeng; 2009 Jun; 103(3):592-608. PubMed ID: 19241388 [TBL] [Abstract][Full Text] [Related]
15. Metabolic analysis of antibody producing CHO cells in fed-batch production. Dean J; Reddy P Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898 [TBL] [Abstract][Full Text] [Related]
16. Considerations on the lactate consumption by CHO cells in the presence of galactose. Altamirano C; Illanes A; Becerra S; Cairó JJ; Gòdia F J Biotechnol; 2006 Oct; 125(4):547-56. PubMed ID: 16822573 [TBL] [Abstract][Full Text] [Related]
17. Cell culture and gene transcription effects of copper sulfate on Chinese hamster ovary cells. Qian Y; Khattak SF; Xing Z; He A; Kayne PS; Qian NX; Pan SH; Li ZJ Biotechnol Prog; 2011 Jul; 27(4):1190-4. PubMed ID: 21595052 [TBL] [Abstract][Full Text] [Related]
18. Probing of C-terminal lysine variation in a recombinant monoclonal antibody production using Chinese hamster ovary cells with chemically defined media. Luo J; Zhang J; Ren D; Tsai WL; Li F; Amanullah A; Hudson T Biotechnol Bioeng; 2012 Sep; 109(9):2306-15. PubMed ID: 22473810 [TBL] [Abstract][Full Text] [Related]
19. Optimization of chemically defined feed media for monoclonal antibody production in Chinese hamster ovary cells. Kishishita S; Katayama S; Kodaira K; Takagi Y; Matsuda H; Okamoto H; Takuma S; Hirashima C; Aoyagi H J Biosci Bioeng; 2015 Jul; 120(1):78-84. PubMed ID: 25678240 [TBL] [Abstract][Full Text] [Related]
20. Advanced process monitoring and feedback control to enhance cell culture process production and robustness. Zhang A; Tsang VL; Moore B; Shen V; Huang YM; Kshirsagar R; Ryll T Biotechnol Bioeng; 2015 Dec; 112(12):2495-504. PubMed ID: 26108810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]