These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 25311591)
1. Enhanced translocation and growth of Rhodococcus erythropolis PR4 in the alkane phase of aqueous-alkane two phase cultures were mediated by GroEL2 overexpression. Takihara H; Ogihara J; Yoshida T; Okuda S; Nakajima M; Iwabuchi N; Sunairi M Microbes Environ; 2014; 29(4):346-52. PubMed ID: 25311591 [TBL] [Abstract][Full Text] [Related]
2. Role of interfacial tensions in the translocation of Rhodococcus erythropolis during growth in a two phase culture. Iwabuchi N; Sharma PK; Sunairi M; Kishi E; Sugita K; van der Mei HC; Nakajima M; Busscher HJ Environ Sci Technol; 2009 Nov; 43(21):8290-4. PubMed ID: 19924958 [TBL] [Abstract][Full Text] [Related]
3. Rhodococcus rhodochrous ATCC12674 becomes alkane-tolerant upon GroEL2 overexpression and survives in the n-octane phase in two phase culture. Takihara H; Matsuura C; Ogihara J; Iwabuchi N; Sunairi M Microbes Environ; 2014; 29(4):431-3. PubMed ID: 25491752 [TBL] [Abstract][Full Text] [Related]
4. Mg(2+)-Dependent Control of the Spatial Arrangement of Rhodococcus erythropolis PR4 Cells in Aqueous-Alkane Two Phase Culture Containing n-Dodecane. Takihara H; Akase Y; Sunairi M; Iwabuchi N Microbes Environ; 2016 Jun; 31(2):178-81. PubMed ID: 27180641 [TBL] [Abstract][Full Text] [Related]
5. Alkane-translocated cells of Rhodococcus strains utilize dissolved oxygen in the alkane phase of an aqueous-alkane two-phase culture. Iwabuchi N; Takihara H Biosci Biotechnol Biochem; 2024 Jul; 88(8):979-982. PubMed ID: 38794895 [TBL] [Abstract][Full Text] [Related]
6. Structural analysis of mucoidan, an acidic extracellular polysaccharide produced by a pristane-assimilating marine bacterium, Rhodococcus erythropolis PR4. Urai M; Yoshizaki H; Anzai H; Ogihara J; Iwabuchi N; Harayama S; Sunairi M; Nakajima M Carbohydr Res; 2007 May; 342(7):927-32. PubMed ID: 17316584 [TBL] [Abstract][Full Text] [Related]
7. Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons. Laczi K; Kis Á; Horváth B; Maróti G; Hegedüs B; Perei K; Rákhely G Appl Microbiol Biotechnol; 2015 Nov; 99(22):9745-59. PubMed ID: 26346267 [TBL] [Abstract][Full Text] [Related]
8. Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Sokolovská I; Rozenberg R; Riez C; Rouxhet PG; Agathos SN; Wattiau P Appl Environ Microbiol; 2003 Dec; 69(12):7019-27. PubMed ID: 14660344 [TBL] [Abstract][Full Text] [Related]
9. Structural analysis of an acidic, fatty acid ester-bonded extracellular polysaccharide produced by a pristane-assimilating marine bacterium, Rhodococcus erythropolis PR4. Urai M; Yoshizaki H; Anzai H; Ogihara J; Iwabuchi N; Harayama S; Sunairi M; Nakajima M Carbohydr Res; 2007 May; 342(7):933-42. PubMed ID: 17316581 [TBL] [Abstract][Full Text] [Related]
10. Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. de Carvalho CC; Wick LY; Heipieper HJ Appl Microbiol Biotechnol; 2009 Feb; 82(2):311-20. PubMed ID: 19096838 [TBL] [Abstract][Full Text] [Related]
11. Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP. Niescher S; Wray V; Lang S; Kaschabek SR; Schlömann M Appl Microbiol Biotechnol; 2006 May; 70(5):605-11. PubMed ID: 16133336 [TBL] [Abstract][Full Text] [Related]
12. [Particularities of alkane oxidation in Rhodococcus erythropolis EK-1 strain--producer of surface-active substances]. Pyroh TP; Shevchuk TA; Klymenko IuO Mikrobiol Z; 2009; 71(4):9-14. PubMed ID: 19938610 [TBL] [Abstract][Full Text] [Related]
13. Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Sekine M; Tanikawa S; Omata S; Saito M; Fujisawa T; Tsukatani N; Tajima T; Sekigawa T; Kosugi H; Matsuo Y; Nishiko R; Imamura K; Ito M; Narita H; Tago S; Fujita N; Harayama S Environ Microbiol; 2006 Feb; 8(2):334-46. PubMed ID: 16423019 [TBL] [Abstract][Full Text] [Related]
14. Haloalkane hydrolysis by Rhodococcus erythropolis cells: comparison of conventional aqueous phase dehalogenation and nonconventional gas phase dehalogenation. Erable B; Goubet I; Lamare S; Legoy MD; Maugard T Biotechnol Bioeng; 2004 Apr; 86(1):47-54. PubMed ID: 15007840 [TBL] [Abstract][Full Text] [Related]
15. Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism. Zampolli J; Collina E; Lasagni M; Di Gennaro P AMB Express; 2014; 4():73. PubMed ID: 25401074 [TBL] [Abstract][Full Text] [Related]
16. [Intensification of surfactant synthesis in Rhodococcus erythropolis EK-1 cultivated on hexadecane]. Pirog TP; Shevchuk TA; Klimenko IuA Prikl Biokhim Mikrobiol; 2010; 46(6):651-8. PubMed ID: 21261075 [TBL] [Abstract][Full Text] [Related]
17. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature. Luong TM; Ponamoreva ON; Nechaeva IA; Petrikov KV; Delegan YA; Surin AK; Linklater D; Filonov AE World J Microbiol Biotechnol; 2018 Jan; 34(2):20. PubMed ID: 29302805 [TBL] [Abstract][Full Text] [Related]
18. Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+14He. Kim IS; Foght JM; Gray MR Biotechnol Bioeng; 2002 Dec; 80(6):650-9. PubMed ID: 12378606 [TBL] [Abstract][Full Text] [Related]