BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25311659)

  • 1. Interaction of adriamycin with a regulatory element of hmgb1: spectroscopic and calorimetric approach.
    Lohani N; Narayan Singh H; Agarwal S; Mehrotra R; Rajeswari MR
    J Biomol Struct Dyn; 2015; 33(8):1612-23. PubMed ID: 25311659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and Thermodynamic Studies on DNA Triplex Formed in the Promoter Region of HMGB1 Gene as a Selective Target for Anticancer Drugs.
    Neelam L; Rajeswari MR
    Anticancer Agents Med Chem; 2017; 17(12):1698-1709. PubMed ID: 28270074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular aspects on adriamycin interaction with hmga1 regulatory region and its inhibitory effect on HMGA1 expression in human cervical cancer.
    Akhter MZ; Luthra K; Rajeswari MR
    J Biomol Struct Dyn; 2016; 34(4):877-91. PubMed ID: 26084422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural aspects of the interaction of anticancer drug Actinomycin-D to the GC rich region of hmgb1 gene.
    Lohani N; Singh HN; Moganty RR
    Int J Biol Macromol; 2016 Jun; 87():433-42. PubMed ID: 26923673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of adriamycin with a promoter region of hmga1 and its inhibitory effect on HMGA1 expression in A431 human squamous carcinoma cell line.
    Akhter MZ; Sharma A; Rajeswari MR
    Mol Biosyst; 2011 Apr; 7(4):1336-46. PubMed ID: 21336378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of doxorubicin with a regulatory element of hmga1 and its in vitro anti-cancer activity associated with decreased HMGA1 expression.
    Akhter MZ; Rajeswari MR
    J Photochem Photobiol B; 2014 Dec; 141():36-46. PubMed ID: 25313540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of HMGB1 interaction with duplex DNA.
    Müller S; Bianchi ME; Knapp S
    Biochemistry; 2001 Aug; 40(34):10254-61. PubMed ID: 11513603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Role of high mobility group box 1 in adriamycin-induced apoptosis in leukemia K562 cells].
    Yu Y; Xie M; He YL; Xu WQ; Zhu S; Cao LZ
    Ai Zheng; 2008 Sep; 27(9):929-33. PubMed ID: 18799030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of binding properties of Actinomycin-D to 21nt DNA segment of hmgb1 gene promoter using spectroscopic and calorimetric techniques.
    Lohani N; Singh HN; Rajeswari MR
    J Biomol Struct Dyn; 2018 Feb; 36(2):504-511. PubMed ID: 28033959
    [No Abstract]   [Full Text] [Related]  

  • 10. Fourier transform infrared/vibrational circular dichroism spectroscopy as an informative tool for the investigation of large supramolecular complexes of biological macromolecules.
    Polyanichko A; Wieser H
    Biopolymers; 2005 Aug; 78(6):329-39. PubMed ID: 15912505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural, conformational and thermodynamic aspects of groove-directed-intercalation of flavopiridol into DNA.
    Ray B; Agarwal S; Lohani N; Rajeswari MR; Mehrotra R
    J Biomol Struct Dyn; 2016 Nov; 34(11):2518-35. PubMed ID: 26599132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-intercalative, deoxyribose binding of boric acid to calf thymus DNA.
    Ozdemir A; Gursaclı RT; Tekinay T
    Biol Trace Elem Res; 2014 May; 158(2):268-74. PubMed ID: 24652629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FTIR and circular dichroism spectroscopic study of interaction of 5-fluorouracil with DNA.
    Jangir DK; Charak S; Mehrotra R; Kundu S
    J Photochem Photobiol B; 2011 Nov; 105(2):143-8. PubMed ID: 21940176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic and calorimetric studies on the DNA recognition of pyrrolo[2,1-c][1,4]benzodiazepine hybrids.
    Rettig M; Kamal A; Ramu R; Mikolajczak J; Weisz K
    Bioorg Med Chem; 2009 Jan; 17(2):919-28. PubMed ID: 19056283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic and calorimetric studies on the binding of an indoloquinoline drug to parallel and antiparallel DNA triplexes.
    Riechert-Krause F; Autenrieth K; Eick A; Weisz K
    Biochemistry; 2013 Jan; 52(1):41-52. PubMed ID: 23234257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidation of the DNA binding specificity of the natural plant alkaloid chelerythrine: a biophysical approach.
    Basu P; Suresh Kumar G
    J Photochem Photobiol B; 2014 Sep; 138():282-94. PubMed ID: 25010289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-spectroscopic methods combined with molecular modeling dissect the interaction mechanisms of ractopamine and calf thymus DNA.
    Chai J; Wang J; Xu Q; Hao F; Liu R
    Mol Biosyst; 2012 Jul; 8(7):1902-7. PubMed ID: 22610465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting ribonucleic acids by toxic small molecules: structural perturbation and energetics of interaction of phenothiazinium dyes thionine and toluidine blue O to tRNA phe.
    Paul P; Kumar GS
    J Hazard Mater; 2013 Dec; 263 Pt 2():735-45. PubMed ID: 24231328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biophysical studies on curcumin-deoxyribonucleic acid interaction: spectroscopic and calorimetric approach.
    Basu A; Kumar GS
    Int J Biol Macromol; 2013 Nov; 62():257-64. PubMed ID: 24041996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unravelling the interaction of pirenzepine, a gastrointestinal disorder drug, with calf thymus DNA: An in vitro and molecular modelling study.
    Rahman Y; Afrin S; Husain MA; Sarwar T; Ali A; Shamsuzzaman ; Tabish M
    Arch Biochem Biophys; 2017 Jul; 625-626():1-12. PubMed ID: 28558964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.