BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 25311937)

  • 1. The X-ray crystal structure of the euryarchaeal RNA polymerase in an open-clamp configuration.
    Jun SH; Hirata A; Kanai T; Santangelo TJ; Imanaka T; Murakami KS
    Nat Commun; 2014 Oct; 5():5132. PubMed ID: 25311937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7.
    Rodriguez AC; Park HW; Mao C; Beese LS
    J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct binding of TFEα opens DNA binding cleft of RNA polymerase.
    Jun SH; Hyun J; Cha JS; Kim H; Bartlett MS; Cho HS; Murakami KS
    Nat Commun; 2020 Nov; 11(1):6123. PubMed ID: 33257704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure.
    Korkhin Y; Unligil UM; Littlefield O; Nelson PJ; Stuart DI; Sigler PB; Bell SD; Abrescia NG
    PLoS Biol; 2009 May; 7(5):e1000102. PubMed ID: 19419240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The X-ray crystal structure of RNA polymerase from Archaea.
    Hirata A; Klein BJ; Murakami KS
    Nature; 2008 Feb; 451(7180):851-4. PubMed ID: 18235446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Archaeal RNA polymerase subunits E and F are not required for transcription in vitro, but a Thermococcus kodakarensis mutant lacking subunit F is temperature-sensitive.
    Hirata A; Kanai T; Santangelo TJ; Tajiri M; Manabe K; Reeve JN; Imanaka T; Murakami KS
    Mol Microbiol; 2008 Nov; 70(3):623-33. PubMed ID: 18786148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Archaeal RNA polymerase: the influence of the protruding stalk in crystal packing and preliminary biophysical analysis of the Rpo13 subunit.
    Wojtas M; Peralta B; Ondiviela M; Mogni M; Bell SD; Abrescia NG
    Biochem Soc Trans; 2011 Jan; 39(1):25-30. PubMed ID: 21265742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Archaeal RNA polymerase arrests transcription at DNA lesions.
    Gehring AM; Santangelo TJ
    Transcription; 2017; 8(5):288-296. PubMed ID: 28598254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases.
    Thomm M; Reich C; Grünberg S; Naji S
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):18-22. PubMed ID: 19143595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TFE and Spt4/5 open and close the RNA polymerase clamp during the transcription cycle.
    Schulz S; Gietl A; Smollett K; Tinnefeld P; Werner F; Grohmann D
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1816-25. PubMed ID: 26979960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Branched-chain polyamine stabilizes RNA polymerase at elevated temperatures in hyperthermophiles.
    Yamori Y; Hamakawa M; Hidese R; Fukuda M; Atomi H; Fukuda W; Fujiwara S
    Amino Acids; 2020 Feb; 52(2):275-285. PubMed ID: 31101997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression, crystallization and preliminary X-ray crystallographic analysis of DNA-directed RNA polymerase subunit L from Thermococcus onnurineus NA1.
    Ho TH; Hong MK; Ngo HP; Kang LW
    Acta Crystallogr F Struct Biol Commun; 2014 May; 70(Pt 5):639-42. PubMed ID: 24817728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment.
    Tarău D; Grünberger F; Pilsl M; Reichelt R; Heiß F; König S; Urlaub H; Hausner W; Engel C; Grohmann D
    Nucleic Acids Res; 2024 Jun; 52(10):6017-6035. PubMed ID: 38709902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the open region and of DNA-protein contacts of archaeal RNA polymerase transcription complexes during transition from initiation to elongation.
    Spitalny P; Thomm M
    J Biol Chem; 2003 Aug; 278(33):30497-505. PubMed ID: 12783891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity.
    Martinez-Rucobo FW; Sainsbury S; Cheung AC; Cramer P
    EMBO J; 2011 Apr; 30(7):1302-10. PubMed ID: 21386817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Archaeal RNA polymerase and transcription regulation.
    Jun SH; Reichlen MJ; Tajiri M; Murakami KS
    Crit Rev Biochem Mol Biol; 2011 Feb; 46(1):27-40. PubMed ID: 21250781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of a chimeric Rpb5/RpoH subunit using library selection.
    Sommer B; Waege I; Pöllmann D; Seitz T; Thomm M; Sterner R; Hausner W
    PLoS One; 2014; 9(1):e87485. PubMed ID: 24489922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of GTP-dependent dephospho-coenzyme A kinase from the hyperthermophilic archaeon, Thermococcus kodakarensis.
    Kita A; Ishida Y; Shimosaka T; Michimori Y; Makarova K; Koonin E; Atomi H; Miki K
    Proteins; 2024 Jun; 92(6):768-775. PubMed ID: 38235908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif.
    Hirtreiter A; Damsma GE; Cheung AC; Klose D; Grohmann D; Vojnic E; Martin AC; Cramer P; Werner F
    Nucleic Acids Res; 2010 Jul; 38(12):4040-51. PubMed ID: 20197319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyses of in vivo interactions between transcription factors and the archaeal RNA polymerase.
    Walker JE; Santangelo TJ
    Methods; 2015 Sep; 86():73-9. PubMed ID: 26028597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.