These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25311937)

  • 21. Archaeal RNA polymerase.
    Hirata A; Murakami KS
    Curr Opin Struct Biol; 2009 Dec; 19(6):724-31. PubMed ID: 19880312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Revealing the functions of TFIIB.
    Weinzierl RO; Wiesler SC
    Transcription; 2011; 2(6):254-7. PubMed ID: 22223047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multisubunit RNA polymerases.
    Cramer P
    Curr Opin Struct Biol; 2002 Feb; 12(1):89-97. PubMed ID: 11839495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS.
    Nagy J; Grohmann D; Cheung AC; Schulz S; Smollett K; Werner F; Michaelis J
    Nat Commun; 2015 Jan; 6():6161. PubMed ID: 25635909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TFB1 or TFB2 is sufficient for Thermococcus kodakaraensis viability and for basal transcription in vitro.
    Santangelo TJ; Cubonová L; James CL; Reeve JN
    J Mol Biol; 2007 Mar; 367(2):344-57. PubMed ID: 17275836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly.
    Minakhin L; Bhagat S; Brunning A; Campbell EA; Darst SA; Ebright RH; Severinov K
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):892-7. PubMed ID: 11158566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of a [NiFe] hydrogenase maturation protease HybD from Thermococcus kodakarensis KOD1.
    Kwon S; Nishitani Y; Watanabe S; Hirao Y; Imanaka T; Kanai T; Atomi H; Miki K
    Proteins; 2016 Sep; 84(9):1321-7. PubMed ID: 27192667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation.
    Grohmann D; Nagy J; Chakraborty A; Klose D; Fielden D; Ebright RH; Michaelis J; Werner F
    Mol Cell; 2011 Jul; 43(2):263-74. PubMed ID: 21777815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNAP subunits F/E (RPB4/7) are stably associated with archaeal RNA polymerase: using fluorescence anisotropy to monitor RNAP assembly in vitro.
    Grohmann D; Hirtreiter A; Werner F
    Biochem J; 2009 Jul; 421(3):339-43. PubMed ID: 19492989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular basis of transcription initiation in Archaea.
    De Carlo S; Lin SC; Taatjes DJ; Hoenger A
    Transcription; 2010; 1(2):103-11. PubMed ID: 21326901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural Studies of HNA Substrate Specificity in Mutants of an Archaeal DNA Polymerase Obtained by Directed Evolution.
    Samson C; Legrand P; Tekpinar M; Rozenski J; Abramov M; Holliger P; Pinheiro VB; Herdewijn P; Delarue M
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33302546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of the Escherichia coli RNA polymerase alpha subunit amino-terminal domain.
    Zhang G; Darst SA
    Science; 1998 Jul; 281(5374):262-6. PubMed ID: 9657722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rearrangement of the RNA polymerase subunit H and the lower jaw in archaeal elongation complexes.
    Grünberg S; Reich C; Zeller ME; Bartlett MS; Thomm M
    Nucleic Acids Res; 2010 Apr; 38(6):1950-63. PubMed ID: 20040576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Component H of the DNA-dependent RNA polymerases of Archaea is homologous to a subunit shared by the three eucaryal nuclear RNA polymerases.
    Klenk HP; Palm P; Lottspeich F; Zillig W
    Proc Natl Acad Sci U S A; 1992 Jan; 89(1):407-10. PubMed ID: 1729711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and functional analyses of the interaction of archaeal RNA polymerase with DNA.
    Wojtas MN; Mogni M; Millet O; Bell SD; Abrescia NG
    Nucleic Acids Res; 2012 Oct; 40(19):9941-52. PubMed ID: 22848102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure of an archaeal RNA polymerase.
    Kusser AG; Bertero MG; Naji S; Becker T; Thomm M; Beckmann R; Cramer P
    J Mol Biol; 2008 Feb; 376(2):303-7. PubMed ID: 18164030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases.
    Wang B; Jones DN; Kaine BP; Weiss MA
    Structure; 1998 May; 6(5):555-69. PubMed ID: 9634694
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of RPB5, a universal eukaryotic RNA polymerase subunit and transcription factor interaction target.
    Todone F; Weinzierl RO; Brick P; Onesti S
    Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6306-10. PubMed ID: 10841537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uracil recognition in archaeal DNA polymerases captured by X-ray crystallography.
    Firbank SJ; Wardle J; Heslop P; Lewis RJ; Connolly BA
    J Mol Biol; 2008 Sep; 381(3):529-39. PubMed ID: 18614176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular Structures of Transcribing RNA Polymerase I.
    Tafur L; Sadian Y; Hoffmann NA; Jakobi AJ; Wetzel R; Hagen WJH; Sachse C; Müller CW
    Mol Cell; 2016 Dec; 64(6):1135-1143. PubMed ID: 27867008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.