These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 25312006)
1. Stimuli-sensitive intrinsically disordered protein brushes. Srinivasan N; Bhagawati M; Ananthanarayanan B; Kumar S Nat Commun; 2014 Oct; 5():5145. PubMed ID: 25312006 [TBL] [Abstract][Full Text] [Related]
2. Structural Regulation of a Neurofilament-Inspired Intrinsically Disordered Protein Brush by Multisite Phosphorylation. Lei R; Lee JP; Francis MB; Kumar S Biochemistry; 2018 Jul; 57(27):4019-4028. PubMed ID: 29557644 [TBL] [Abstract][Full Text] [Related]
3. Switchable friction using contacts of stimulus-responsive and nonresponding swollen polymer brushes. de Beer S Langmuir; 2014 Jul; 30(27):8085-90. PubMed ID: 24954240 [TBL] [Abstract][Full Text] [Related]
10. On the monomer density of grafted polyelectrolyte brushes and their interactions. Manciu M; Ruckenstein E Langmuir; 2004 Sep; 20(19):8155-64. PubMed ID: 15350087 [TBL] [Abstract][Full Text] [Related]
11. Bioadhesive control of plasma proteins and blood cells from umbilical cord blood onto the interface grafted with zwitterionic polymer brushes. Chang Y; Chang Y; Higuchi A; Shih YJ; Li PT; Chen WY; Tsai EM; Hsiue GH Langmuir; 2012 Mar; 28(9):4309-17. PubMed ID: 22268580 [TBL] [Abstract][Full Text] [Related]
12. Site-Specific Modulation of Charge Controls the Structure and Stimulus Responsiveness of Intrinsically Disordered Peptide Brushes. Bhagawati M; Rubashkin MG; Lee JP; Ananthanarayanan B; Weaver VM; Kumar S Langmuir; 2016 Jun; 32(23):5990-6. PubMed ID: 27203736 [TBL] [Abstract][Full Text] [Related]
13. Surface grafted polymer brushes as ideal building blocks for "smart" surfaces. Zhou F; Huck WT Phys Chem Chem Phys; 2006 Sep; 8(33):3815-23. PubMed ID: 19817040 [TBL] [Abstract][Full Text] [Related]
14. Mesoscale simulations of the behavior of charged polymer brushes under normal compression and lateral shear forces. Sirchabesan M; Giasson S Langmuir; 2007 Sep; 23(19):9713-21. PubMed ID: 17696369 [TBL] [Abstract][Full Text] [Related]
15. Tapping the potential of polymer brushes through synthesis. Li B; Yu B; Ye Q; Zhou F Acc Chem Res; 2015 Feb; 48(2):229-37. PubMed ID: 25521476 [TBL] [Abstract][Full Text] [Related]
16. Polymer brushes for friction control: Contributions of molecular simulations. Abdelbar MA; Ewen JP; Dini D; Angioletti-Uberti S Biointerphases; 2023 Jan; 18(1):010801. PubMed ID: 36653299 [TBL] [Abstract][Full Text] [Related]
17. Effect of the ionic strength and pH on the equilibrium structure of a neurofilament brush. Zhulina EB; Leermakers FA Biophys J; 2007 Sep; 93(5):1452-63. PubMed ID: 17513355 [TBL] [Abstract][Full Text] [Related]
18. High capacity, charge-selective protein uptake by polyelectrolyte brushes. Kusumo A; Bombalski L; Lin Q; Matyjaszewski K; Schneider JW; Tilton RD Langmuir; 2007 Apr; 23(8):4448-54. PubMed ID: 17358090 [TBL] [Abstract][Full Text] [Related]
19. Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Majoinen J; Walther A; McKee JR; Kontturi E; Aseyev V; Malho JM; Ruokolainen J; Ikkala O Biomacromolecules; 2011 Aug; 12(8):2997-3006. PubMed ID: 21740051 [TBL] [Abstract][Full Text] [Related]
20. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma. Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]