These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 25312008)

  • 1. Effect of soybean lecithin on iron-catalyzed or chlorophyll-photosensitized oxidation of canola oil emulsion.
    Choe J; Oh B; Choe E
    J Food Sci; 2014 Nov; 79(11):C2203-8. PubMed ID: 25312008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of fatty acid composition and β-carotene on the chlorophyll photosensitized oxidation of W/O emulsion affected by phosphatidylcholine.
    Lee Y; Choe E
    J Food Sci; 2013 Jan; 78(1):C31-6. PubMed ID: 23278500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid composition and emulsifying properties of canola lecithin from enzymatic degumming.
    Xie M; Dunford NT
    Food Chem; 2017 Mar; 218():159-164. PubMed ID: 27719893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of lecithin and pectin on riboflavin-photosensitized oxidation of orange oil in a multilayered oil-in-water emulsion.
    Yang TS; Liu TT; Hu TF
    J Agric Food Chem; 2011 Sep; 59(17):9344-50. PubMed ID: 21819131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractionating of canola lecithin from acid degumming and its effect.
    Xie M; Dunford NT
    Food Chem; 2019 Dec; 300():125217. PubMed ID: 31351255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced fish oil-in-water emulsions enabled by rapeseed lecithins obtained under different processing conditions.
    Li J; Pedersen JN; Anankanbil S; Guo Z
    Food Chem; 2018 Oct; 264():233-240. PubMed ID: 29853370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasound Assisted Synthesis of Hydroxylated Soybean Lecithin from Crude Soybean Lecithin as an Emulsifier.
    Chiplunkar PP; Pratap AP
    J Oleo Sci; 2017 Oct; 66(10):1101-1108. PubMed ID: 28924086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical and Oxidative Stability of Flaxseed Oil-in-Water Emulsions Fabricated from Sunflower Lecithins: Impact of Blending Lecithins with Different Phospholipid Profiles.
    Liang L; Chen F; Wang X; Jin Q; Decker EA; McClements DJ
    J Agric Food Chem; 2017 Jun; 65(23):4755-4765. PubMed ID: 28534401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of antioxidant properties of lecithin emulsifier on oxidative stability of encapsulated bioactive compounds.
    Pan Y; Tikekar RV; Nitin N
    Int J Pharm; 2013 Jun; 450(1-2):129-37. PubMed ID: 23618963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of enzymatic degraded polysaccharides from Enteromorpha prolifera on the physical and oxidative stability of fish oil-in-water emulsions.
    Shi MJ; Wang F; Jiang H; Qian WW; Xie YY; Wei XY; Zhou T
    Food Chem; 2020 Aug; 322():126774. PubMed ID: 32305876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of phosphatidylcholine and phosphatidylethanolamine on the photooxidation of canola oil.
    Lee J; Choe E
    J Food Sci; 2009 Aug; 74(6):C481-6. PubMed ID: 19723186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Singlet oxygen quenching effects of phosphatidylcholine in emulsion containing sunflower oil.
    Lee Y; Choe E
    J Food Sci; 2008 Aug; 73(6):C506-11. PubMed ID: 19241542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant Properties of Astaxanthin in Oil-in-Water Emulsions with Differently-Charged Emulsifiers Under Chlorophyll Photosensitization.
    Yi B; Kim MJ; Lee J
    J Food Sci; 2018 Mar; 83(3):589-596. PubMed ID: 29412454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food grade microemulsion systems: canola oil/lecithin:n-propanol/water.
    Abbasi S; Radi M
    Food Chem; 2016 Mar; 194():972-9. PubMed ID: 26471642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of phospholipids on the antioxidant activity of α-tocopherol in the singlet oxygen oxidation of canola oil.
    Lee J; Choe E
    N Biotechnol; 2011 Oct; 28(6):691-7. PubMed ID: 21621019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical Stability, Autoxidation, and Photosensitized Oxidation of ω-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants.
    Uluata S; McClements DJ; Decker EA
    J Agric Food Chem; 2015 Oct; 63(42):9333-40. PubMed ID: 26452408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and stability of W/O-high internal phase emulsions (HIPEs) and derived O/W emulsions stabilized by PGPR and lecithin.
    Okuro PK; Gomes A; Costa ALR; Adame MA; Cunha RL
    Food Res Int; 2019 Aug; 122():252-262. PubMed ID: 31229079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prooxidative and antioxidative properties of β-carotene in chlorophyll and riboflavin photosensitized oil-in-water emulsions.
    Park J; Kim TS; Kim MJ; Lee J
    Food Chem; 2013 Sep; 140(1-2):255-61. PubMed ID: 23578641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of phosphatidylcholine and α-tocopherol on the oxidation of sunflower oil and content changes of phosphatidylcholine and tocopherol in the emulsion under singlet oxygen.
    Lee Y; Choe E
    J Food Sci; 2011 Apr; 76(3):C498-503. PubMed ID: 21535820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the applicability of HLB values for natural phospholipid emulsifiers for preparation of stable emulsions.
    Otto F; van Hoogevest P; Syrowatka F; Heinl V; Neubert RHH
    Pharmazie; 2020 Aug; 75(8):365-370. PubMed ID: 32758334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.