These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 25312372)
1. Computational fluid dynamics as surgical planning tool: a pilot study on middle turbinate resection. Zhao K; Malhotra P; Rosen D; Dalton P; Pribitkin EA Anat Rec (Hoboken); 2014 Nov; 297(11):2187-95. PubMed ID: 25312372 [TBL] [Abstract][Full Text] [Related]
2. Impact of Middle Turbinectomy on Airflow to the Olfactory Cleft: A Computational Fluid Dynamics Study. Alam S; Li C; Bradburn KH; Zhao K; Lee TS Am J Rhinol Allergy; 2019 May; 33(3):263-268. PubMed ID: 30543120 [TBL] [Abstract][Full Text] [Related]
3. Computational Fluid Dynamics to Evaluate the Effectiveness of Inferior Turbinate Reduction Techniques to Improve Nasal Airflow. Lee TS; Goyal P; Li C; Zhao K JAMA Facial Plast Surg; 2018 Jul; 20(4):263-270. PubMed ID: 29372235 [TBL] [Abstract][Full Text] [Related]
4. Modelling the effects of post-FESS middle turbinate synechiae on sinonasal physiology: A computational fluid dynamics study. Khatri H; Salati H; Wong E; Bradshaw K; Inthavong K; Sacks R; Singh N Auris Nasus Larynx; 2023 Dec; 50(6):911-920. PubMed ID: 37137797 [TBL] [Abstract][Full Text] [Related]
5. Impact of a Concha Bullosa on Nasal Airflow Characteristics in the Setting of Nasal Septal Deviation: A Computational Fluid Dynamics Analysis. Li L; Zang H; Han D; Ramanathan M; Carrau RL; London NR Am J Rhinol Allergy; 2020 Jul; 34(4):456-462. PubMed ID: 32046502 [TBL] [Abstract][Full Text] [Related]
6. Numerical modeling of nasal obstruction and endoscopic surgical intervention: outcome to airflow and olfaction. Zhao K; Pribitkin EA; Cowart BJ; Rosen D; Scherer PW; Dalton P Am J Rhinol; 2006; 20(3):308-16. PubMed ID: 16871935 [TBL] [Abstract][Full Text] [Related]
7. Aerodynamic effects of inferior turbinate surgery on nasal airflow--a computational fluid dynamics model. Chen XB; Leong SC; Lee HP; Chong VF; Wang DY Rhinology; 2010 Dec; 48(4):394-400. PubMed ID: 21442074 [TBL] [Abstract][Full Text] [Related]
8. Computational fluid dynamics calculations in inferior turbinate surgery: a cohort study. Ormiskangas J; Valtonen O; Harju T; Rautiainen M; Kivekäs I Eur Arch Otorhinolaryngol; 2023 Nov; 280(11):4923-4931. PubMed ID: 37341759 [TBL] [Abstract][Full Text] [Related]
9. Computational fluid dynamics and trigeminal sensory examinations of empty nose syndrome patients. Li C; Farag AA; Leach J; Deshpande B; Jacobowitz A; Kim K; Otto BA; Zhao K Laryngoscope; 2017 Jun; 127(6):E176-E184. PubMed ID: 28278356 [TBL] [Abstract][Full Text] [Related]
10. Effects of partial middle turbinectomy with varying resection volume and location on nasal functions and airflow characteristics by CFD. Lee KB; Jeon YS; Chung SK; Kim SK Comput Biol Med; 2016 Oct; 77():214-21. PubMed ID: 27598464 [TBL] [Abstract][Full Text] [Related]
11. Computational fluid dynamic analysis of aggressive turbinate reductions: is it a culprit of empty nose syndrome? Malik J; Li C; Maza G; Farag AA; Krebs JP; McGhee S; Zappitelli G; Deshpande B; Otto BA; Zhao K Int Forum Allergy Rhinol; 2019 Aug; 9(8):891-899. PubMed ID: 31077575 [TBL] [Abstract][Full Text] [Related]
12. Computational fluid dynamics assessed changes of nasal airflow after inferior turbinate surgery. Ormiskangas J; Valtonen O; Harju T; Rautiainen M; Kivekäs I Respir Physiol Neurobiol; 2022 Aug; 302():103917. PubMed ID: 35500884 [TBL] [Abstract][Full Text] [Related]
13. Computational fluid dynamics after endoscopic endonasal skull base surgery-possible empty nose syndrome in the context of middle turbinate resection. Maza G; Li C; Krebs JP; Otto BA; Farag AA; Carrau RL; Zhao K Int Forum Allergy Rhinol; 2019 Feb; 9(2):204-211. PubMed ID: 30488577 [TBL] [Abstract][Full Text] [Related]
14. Inferior meatus augmentation procedure (IMAP) normalizes nasal airflow patterns in empty nose syndrome patients via computational fluid dynamics (CFD) modeling. Malik J; Dholakia S; Spector BM; Yang A; Kim D; Borchard NA; Thamboo A; Zhao K; Nayak JV Int Forum Allergy Rhinol; 2021 May; 11(5):902-909. PubMed ID: 33249769 [TBL] [Abstract][Full Text] [Related]
15. Identifying patients who may benefit from inferior turbinate reduction using computer simulations. Hariri BM; Rhee JS; Garcia GJ Laryngoscope; 2015 Dec; 125(12):2635-41. PubMed ID: 25963247 [TBL] [Abstract][Full Text] [Related]
16. Impact of Middle versus Inferior Total Turbinectomy on Nasal Aerodynamics. Dayal A; Rhee JS; Garcia GJ Otolaryngol Head Neck Surg; 2016 Sep; 155(3):518-25. PubMed ID: 27165673 [TBL] [Abstract][Full Text] [Related]
18. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold. Cherobin GB; Voegels RL; Gebrim EMMS; Garcia GJM PLoS One; 2018; 13(11):e0207178. PubMed ID: 30444909 [TBL] [Abstract][Full Text] [Related]
19. The cotton test redistributes nasal airflow in patients with empty nose syndrome. Malik J; Thamboo A; Dholakia S; Borchard NA; McGhee S; Li C; Zhao K; Nayak JV Int Forum Allergy Rhinol; 2020 Apr; 10(4):539-545. PubMed ID: 31951101 [TBL] [Abstract][Full Text] [Related]
20. The effect of "Pyriform Turbinoplasty" on nasal airflow using a virtual model. Simmen D; Sommer F; Briner HR; Jones N; Kröger R; Hoffmann TK; Lindemann J Rhinology; 2015 Sep; 53(3):242-8. PubMed ID: 26363165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]