BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2531285)

  • 1. Transfection of a human gene that corrects the Lec1 glycosylation defect: evidence for transfer of the structural gene for N-acetylglucosaminyltransferase I.
    Kumar R; Stanley P
    Mol Cell Biol; 1989 Dec; 9(12):5713-7. PubMed ID: 2531285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and expression of N-acetylglucosaminyltransferase I, the medial Golgi transferase that initiates complex N-linked carbohydrate formation.
    Kumar R; Yang J; Larsen RD; Stanley P
    Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9948-52. PubMed ID: 1702225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of carbohydrate processing: the lec1A CHO mutation results in partial loss of N-acetylglucosaminyltransferase I activity.
    Stanley P; Chaney W
    Mol Cell Biol; 1985 Jun; 5(6):1204-11. PubMed ID: 2993857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-transformation of Lec 1 CHO cells with N-acetylglucosaminyltransferase 1 activity and a selectable marker.
    Ripka J; Pierce M; Fregien N
    J Cell Biochem; 1990 Mar; 42(3):117-22. PubMed ID: 2138626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Lec4A CHO glycosylation mutant arises from miscompartmentalization of a Golgi glycosyltransferase.
    Chaney W; Sundaram S; Friedman N; Stanley P
    J Cell Biol; 1989 Nov; 109(5):2089-96. PubMed ID: 2530238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lec1A Chinese hamster ovary cell mutants appear to arise from a structural alteration in N-acetylglucosaminyltransferase I.
    Chaney W; Stanley P
    J Biol Chem; 1986 Aug; 261(23):10551-7. PubMed ID: 2942543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-mediated transformation of N-acetylglucosaminyltransferase I activity into an enzyme deficient cell line.
    Ripka J; Pierce M; Fregien N
    Biochem Biophys Res Commun; 1989 Mar; 159(2):554-60. PubMed ID: 2522770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Five Lec1 CHO cell mutants have distinct Mgat1 gene mutations that encode truncated N-acetylglucosaminyltransferase I.
    Chen W; Stanley P
    Glycobiology; 2003 Jan; 13(1):43-50. PubMed ID: 12634323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, biosynthesis, and function of the hexose transporter in Chinese hamster ovary cells deficient in N-acetylglucosaminyltransferase 1 activity.
    Haspel HC; Revillame J; Rosen OM
    J Cell Physiol; 1988 Aug; 136(2):361-6. PubMed ID: 2970467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel genetic instability associated with a developmentally regulated glycosyltransferase locus in Chinese hamster ovary cells.
    Sallustio S; Stanley P
    Somat Cell Mol Genet; 1989 Sep; 15(5):387-400. PubMed ID: 2528829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dominant mutation to ricin resistance in Chinese hamster ovary cells induces UDP-GlcNAc:glycopeptide beta-4-N-acetylglucosaminyltransferase III activity.
    Campbell C; Stanley P
    J Biol Chem; 1984 Nov; 259(21):13370-8. PubMed ID: 6238035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosylation defect in Lec1 Chinese hamster ovary mutant is due to a point mutation in N-acetylglucosaminyltransferase I gene.
    Puthalakath H; Burke J; Gleeson PA
    J Biol Chem; 1996 Nov; 271(44):27818-22. PubMed ID: 8910379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independent Lec1A CHO glycosylation mutants arise from point mutations in N-acetylglucosaminyltransferase I that reduce affinity for both substrates. Molecular consequences based on the crystal structure of GlcNAc-TI.
    Chen W; Unligil UM; Rini JM; Stanley P
    Biochemistry; 2001 Jul; 40(30):8765-72. PubMed ID: 11467936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and expression of the murine gene and chromosomal location of the human gene encoding N-acetylglucosaminyltransferase I.
    Kumar R; Yang J; Eddy RL; Byers MG; Shows TB; Stanley P
    Glycobiology; 1992 Aug; 2(4):383-93. PubMed ID: 1421759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A subclass of cell surface carbohydrates revealed by a CHO mutant with two glycosylation mutations.
    Stanley P; Sundaram S; Sallustio S
    Glycobiology; 1991 Jun; 1(3):307-14. PubMed ID: 1838951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering novel Lec1 glycosylation mutants in CHO-DUKX cells: molecular insights and effector modulation of N-acetylglucosaminyltransferase I.
    Zhong X; Cooley C; Seth N; Juo ZS; Presman E; Resendes N; Kumar R; Allen M; Mosyak L; Stahl M; Somers W; Kriz R
    Biotechnol Bioeng; 2012 Jul; 109(7):1723-34. PubMed ID: 22252477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization and localization to chromosome 5 of the human UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I gene.
    Hull E; Sarkar M; Spruijt MP; Höppener JW; Dunn R; Schachter H
    Biochem Biophys Res Commun; 1991 Apr; 176(2):608-15. PubMed ID: 1827260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementation of a methotrexate uptake defect in Chinese hamster ovary cells by DNA-mediated gene transfer.
    Underhill TM; Flintoff WF
    Mol Cell Biol; 1989 Apr; 9(4):1754-8. PubMed ID: 2725523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Caenorhabditis elegans gene, gly-2, can rescue the N-acetylglucosaminyltransferase V mutation of Lec4 cells.
    Warren CE; Krizus A; Roy PJ; Culotti JG; Dennis JW
    J Biol Chem; 2002 Jun; 277(25):22829-38. PubMed ID: 11937505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lec3 Chinese hamster ovary mutants lack UDP-N-acetylglucosamine 2-epimerase activity because of mutations in the epimerase domain of the Gne gene.
    Hong Y; Stanley P
    J Biol Chem; 2003 Dec; 278(52):53045-54. PubMed ID: 14561743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.