These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25312919)

  • 21. Four-angle method for practical ultra-high-resolution magnetic resonance mapping of brain longitudinal relaxation time and apparent proton density.
    Bouhrara M; Rejimon AC; Cortina LE; Khattar N; Spencer RG
    Magn Reson Imaging; 2020 Feb; 66():57-68. PubMed ID: 31730882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of radiofrequency inhomogeneity on water-content based electrical properties tomography and its correction by flip angle maps.
    Han J; Gao Y; Nan X; Yu X; Liu F; Xin SX
    Magn Reson Imaging; 2021 May; 78():25-34. PubMed ID: 33450296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correction of excitation profile in Zero Echo Time (ZTE) imaging using quadratic phase-modulated RF pulse excitation and iterative reconstruction.
    Li C; Magland JF; Seifert AC; Wehrli FW
    IEEE Trans Med Imaging; 2014 Apr; 33(4):961-9. PubMed ID: 24710164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accuracy and precision of electrical permittivity mapping at 3T: the impact of three
    Gavazzi S; van den Berg CAT; Sbrizzi A; Kok HP; Stalpers LJA; Lagendijk JJW; Crezee H; van Lier ALHMW
    Magn Reson Med; 2019 Jun; 81(6):3628-3642. PubMed ID: 30737816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid B
    Rejimon AC; Lee DY; Bergeron CM; Zhuo Y; Qian W; Spencer RG; Bouhrara M
    Magn Reson Imaging; 2018 Nov; 53():173-179. PubMed ID: 29958867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrical conductivity and permittivity maps of brain tissues derived from water content based on T
    Michel E; Hernandez D; Lee SY
    Magn Reson Med; 2017 Mar; 77(3):1094-1103. PubMed ID: 26946979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. B
    Boudreau M; Tardif CL; Stikov N; Sled JG; Lee W; Pike GB
    J Magn Reson Imaging; 2017 Dec; 46(6):1673-1682. PubMed ID: 28301086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An automated method for mapping human tissue permittivities by MRI in hyperthermia treatment planning.
    Farace P; Pontalti R; Cristoforetti L; Antolini R; Scarpa M
    Phys Med Biol; 1997 Nov; 42(11):2159-74. PubMed ID: 9394404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved UTE-based attenuation correction for cranial PET-MR using dynamic magnetic field monitoring.
    Aitken AP; Giese D; Tsoumpas C; Schleyer P; Kozerke S; Prieto C; Schaeffter T
    Med Phys; 2014 Jan; 41(1):012302. PubMed ID: 24387523
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decomposition of high-frequency electrical conductivity into extracellular and intracellular compartments based on two-compartment model using low-to-high multi-b diffusion MRI.
    Lee MB; Kim HJ; Kwon OI
    Biomed Eng Online; 2021 Mar; 20(1):29. PubMed ID: 33766044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A regularized, model-based approach to phase-based conductivity mapping using MRI.
    Ropella KM; Noll DC
    Magn Reson Med; 2017 Nov; 78(5):2011-2021. PubMed ID: 28039883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multishot echo-planar MREIT for fast imaging of conductivity, current density, and electric field distributions.
    Chauhan M; Vidya Shankar R; Ashok Kumar N; Kodibagkar VD; Sadleir R
    Magn Reson Med; 2018 Jan; 79(1):71-82. PubMed ID: 28205251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of machine learning to improve the estimation of conductivity and permittivity based on longitudinal relaxation time T1 in magnetic resonance at 7 T.
    Hernandez D; Kim KN
    Sci Rep; 2023 May; 13(1):7837. PubMed ID: 37188769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrashort echo time and zero echo time MRI at 7T.
    Larson PE; Han M; Krug R; Jakary A; Nelson SJ; Vigneron DB; Henry RG; McKinnon G; Kelley DA
    MAGMA; 2016 Jun; 29(3):359-70. PubMed ID: 26702940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multipathway multi-echo (MPME) imaging: all main MR parameters mapped based on a single 3D scan.
    Cheng CC; Preiswerk F; Hoge WS; Kuo TH; Madore B
    Magn Reson Med; 2019 Mar; 81(3):1699-1713. PubMed ID: 30320945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Method for Electrical Property Tomography Based on a Three-Dimensional Integral Representation of the Electric Field.
    Eda N; Fushimi M; Hasegawa K; Nara T
    IEEE Trans Med Imaging; 2022 Jun; 41(6):1400-1409. PubMed ID: 34968176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dictionary-based electric properties tomography.
    Hampe N; Herrmann M; Amthor T; Findeklee C; Doneva M; Katscher U
    Magn Reson Med; 2019 Jan; 81(1):342-349. PubMed ID: 30246342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determining electrical properties based on B(1) fields measured in an MR scanner using a multi-channel transmit/receive coil: a general approach.
    Liu J; Zhang X; Van de Moortele PF; Schmitter S; He B
    Phys Med Biol; 2013 Jul; 58(13):4395-408. PubMed ID: 23743673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An eight-channel transmit/receive multipurpose coil for musculoskeletal MR imaging at 7 T.
    Kraff O; Bitz AK; Dammann P; Ladd SC; Ladd ME; Quick HH
    Med Phys; 2010 Dec; 37(12):6368-76. PubMed ID: 21302794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of permittivity and electrical conductivity on image pattern of MRI.
    Harimoto T; Ohno S; Hattori K; Hirosue M; Miyai M; Shibuya K; Kuroda M; Kanazawa S; Kato H
    J Xray Sci Technol; 2013; 21(2):147-59. PubMed ID: 23694908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.