BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 25313077)

  • 1. Double-stranded RNA under force and torque: similarities to and striking differences from double-stranded DNA.
    Lipfert J; Skinner GM; Keegstra JM; Hensgens T; Jager T; Dulin D; Köber M; Yu Z; Donkers SP; Chou FC; Das R; Dekker NH
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15408-13. PubMed ID: 25313077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blind predictions of DNA and RNA tweezers experiments with force and torque.
    Chou FC; Lipfert J; Das R
    PLoS Comput Biol; 2014 Aug; 10(8):e1003756. PubMed ID: 25102226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the mechanical response of double-stranded DNA and RNA under constant stretching forces using all-atom molecular dynamics.
    Marin-Gonzalez A; Vilhena JG; Perez R; Moreno-Herrero F
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):7049-7054. PubMed ID: 28634300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers.
    Kriegel F; Ermann N; Lipfert J
    J Struct Biol; 2017 Jan; 197(1):26-36. PubMed ID: 27368129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explaining the striking difference in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis.
    Liebl K; Drsata T; Lankas F; Lipfert J; Zacharias M
    Nucleic Acids Res; 2015 Dec; 43(21):10143-56. PubMed ID: 26464435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remarkable similarity of force induced dsRNA conformational changes to stretched dsDNA and their detection using electrical measurements.
    Aggarwal A; Bag S; Maiti PK
    Phys Chem Chem Phys; 2018 Nov; 20(45):28920-28928. PubMed ID: 30422138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global force-torque phase diagram for the DNA double helix: structural transitions, triple points, and collapsed plectonemes.
    Marko JF; Neukirch S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062722. PubMed ID: 24483501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-Dependent Twist of Double-Stranded RNA Probed by Magnetic Tweezer Experiments and Molecular Dynamics Simulations.
    Dohnalová H; Seifert M; Matoušková E; Klein M; Papini FS; Lipfert J; Dulin D; Lankaš F
    J Phys Chem B; 2024 Jan; 128(3):664-675. PubMed ID: 38197365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On structural transitions, thermodynamic equilibrium, and the phase diagram of DNA and RNA duplexes under torque and tension.
    Wereszczynski J; Andricioaei I
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16200-5. PubMed ID: 17060631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Underwound DNA under tension: structure, elasticity, and sequence-dependent behaviors.
    Sheinin MY; Forth S; Marko JF; Wang MD
    Phys Rev Lett; 2011 Sep; 107(10):108102. PubMed ID: 21981534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the Relative Flexibility of RNA and DNA Duplexes: Stretching and Twist-Stretch Coupling.
    Bao L; Zhang X; Shi YZ; Wu YY; Tan ZJ
    Biophys J; 2017 Mar; 112(6):1094-1104. PubMed ID: 28355538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overstretching Double-Stranded RNA, Double-Stranded DNA, and RNA-DNA Duplexes.
    Melkonyan L; Bercy M; Bizebard T; Bockelmann U
    Biophys J; 2019 Aug; 117(3):509-519. PubMed ID: 31337545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The origin of different bending stiffness between double-stranded RNA and DNA revealed by magnetic tweezers and simulations.
    Dong HL; Zhang C; Dai L; Zhang Y; Zhang XH; Tan ZJ
    Nucleic Acids Res; 2024 Mar; 52(5):2519-2529. PubMed ID: 38321947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How topological constraints facilitate growth and stability of bubbles in DNA.
    Jeon JH; Sung W
    Biophys J; 2008 Oct; 95(8):3600-5. PubMed ID: 18621846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural transitions in DNA driven by external force and torque.
    Sarkar A; Léger JF; Chatenay D; Marko JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 1):051903. PubMed ID: 11414929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biophysical characterization of the complex between double-stranded RNA and the N-terminal domain of the NS1 protein from influenza A virus: evidence for a novel RNA-binding mode.
    Chien CY; Xu Y; Xiao R; Aramini JM; Sahasrabudhe PV; Krug RM; Montelione GT
    Biochemistry; 2004 Feb; 43(7):1950-62. PubMed ID: 14967035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A benchmark data set for the mechanical properties of double-stranded DNA and RNA under torsional constraint.
    Vanderlinden W; Kolbeck PJ; Kriegel F; Walker PU; Lipfert J
    Data Brief; 2020 Jun; 30():105404. PubMed ID: 32309523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Torque and buckling in stretched intertwined double-helix DNAs.
    Brahmachari S; Marko JF
    Phys Rev E; 2017 May; 95(5-1):052401. PubMed ID: 28618488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule measurements of the persistence length of double-stranded RNA.
    Abels JA; Moreno-Herrero F; van der Heijden T; Dekker C; Dekker NH
    Biophys J; 2005 Apr; 88(4):2737-44. PubMed ID: 15653727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minor-groove recognition of double-stranded RNA by the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR.
    Bevilacqua PC; Cech TR
    Biochemistry; 1996 Aug; 35(31):9983-94. PubMed ID: 8756460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.