These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25313522)

  • 1. Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications.
    Nowotny T; de Bruyne M; Berna AZ; Warr CG; Trowell SC
    Bioinspir Biomim; 2014 Oct; 9(4):046007. PubMed ID: 25313522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel biomimetic olfactory-based biosensor for single olfactory sensory neuron monitoring.
    Wu C; Chen P; Yu H; Liu Q; Zong X; Cai H; Wang P
    Biosens Bioelectron; 2009 Jan; 24(5):1498-502. PubMed ID: 18799305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia.
    Dekker T; Ibba I; Siju KP; Stensmyr MC; Hansson BS
    Curr Biol; 2006 Jan; 16(1):101-9. PubMed ID: 16401429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilayer perceptron classification of unknown volatile chemicals from the firing rates of insect olfactory sensory neurons and its application to biosensor design.
    Bachtiar LR; Unsworth CP; Newcomb RD; Crampin EJ
    Neural Comput; 2013 Jan; 25(1):259-87. PubMed ID: 23020109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What reaches the antenna? How to calibrate odor flux and ligand-receptor affinities.
    Andersson MN; Schlyter F; Hill SR; Dekker T
    Chem Senses; 2012 Jun; 37(5):403-20. PubMed ID: 22362868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insect antenna-based biosensors for in situ detection of volatiles.
    Schott M; Wehrenfennig C; Gasch T; Vilcinskas A
    Adv Biochem Eng Biotechnol; 2013; 136():101-22. PubMed ID: 23756603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Super e-noses": Multi-layer perceptron classification of volatile odorants from the firing rates of cross-species olfactory receptor arrays.
    Bachtiar LR; Unsworth CP; Newcomb RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():954-7. PubMed ID: 25570118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental temperature modulates olfactory reception in Drosophila melanogaster.
    Martin F; Riveron J; Alcorta E
    J Insect Physiol; 2011 Dec; 57(12):1631-42. PubMed ID: 21924272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial neural network prediction of specific VOCs and blended VOCs for various concentrations from the olfactory receptor firing rates of Drosophila melanogaster.
    Bachtiar LR; Unsworth CP; Newcomb RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3232-5. PubMed ID: 25570679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a truly biomimetic olfactory microsystem: an artificial olfactory mucosa.
    Covington JA; Gardner JW; Hamilton A; Pearce TC; Tan SL
    IET Nanobiotechnol; 2007 Apr; 1(2):15-21. PubMed ID: 17428120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thirty years of olfactory learning and memory research in Drosophila melanogaster.
    McGuire SE; Deshazer M; Davis RL
    Prog Neurobiol; 2005 Aug; 76(5):328-47. PubMed ID: 16266778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classifying continuous, real-time e-nose sensor data using a bio-inspired spiking network modelled on the insect olfactory system.
    Diamond A; Schmuker M; Berna AZ; Trowell S; Nowotny T
    Bioinspir Biomim; 2016 Feb; 11(2):026002. PubMed ID: 26891474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. More than apples and oranges--detecting cancer with a fruit fly's antenna.
    Strauch M; Lüdke A; Münch D; Laudes T; Galizia CG; Martinelli E; Lavra L; Paolesse R; Ulivieri A; Catini A; Capuano R; Di Natale C
    Sci Rep; 2014 Jan; 4():3576. PubMed ID: 24389870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of odorant receptor gene choice in Drosophila and vertebrates.
    Fuss SH; Ray A
    Mol Cell Neurosci; 2009 Jun; 41(2):101-12. PubMed ID: 19303443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (S)-2-pentyl (R)-3-hydroxyhexanoate, a banana volatile and its olfactory recognition by the common fruit fly, Drosophila melanogaster.
    Mowat J; Gries R; Khaskin G; Gries G; Britton R
    J Nat Prod; 2009 Apr; 72(4):772-6. PubMed ID: 19388708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of volatile indicators of illicit substances by the olfactory receptors of Drosophila melanogaster.
    Marshall B; Warr CG; de Bruyne M
    Chem Senses; 2010 Sep; 35(7):613-25. PubMed ID: 20530374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using multilayer perceptron computation to discover ideal insect olfactory receptor combinations in the mosquito and fruit fly for an efficient electronic nose.
    Bachtiar LR; Unsworth CP; Newcomb RD
    Neural Comput; 2015 Jan; 27(1):171-201. PubMed ID: 25380337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fruit fly behavior in response to chemosensory signals.
    Herrero P
    Peptides; 2012 Dec; 38(2):228-37. PubMed ID: 23022590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional basis of the acclimation to high environmental temperature at the olfactory receptor organs of Drosophila melanogaster.
    Riveron J; Boto T; Alcorta E
    BMC Genomics; 2013 Apr; 14():259. PubMed ID: 23590196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using artificial neural networks to classify unknown volatile chemicals from the firings of insect olfactory sensory neurons.
    Bachtiar LR; Unsworth CP; Newcomb RD; Crampin EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2752-5. PubMed ID: 22254911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.