These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 25313717)
1. Ground and excited state proton transfer of the bioactive plant flavonol robinetin in a protein environment: spectroscopic and molecular modeling studies. Pahari BP; Chaudhuri S; Chakraborty S; Sengupta PK J Phys Chem B; 2015 Feb; 119(6):2533-45. PubMed ID: 25313717 [TBL] [Abstract][Full Text] [Related]
2. Effect of beta-cyclodextrin nanocavity confinement on the photophysics of robinetin. Banerjee A; Basu K; Sengupta PK J Photochem Photobiol B; 2007 Dec; 89(2-3):88-97. PubMed ID: 17951065 [TBL] [Abstract][Full Text] [Related]
3. Interaction of 7-hydroxyflavone with human serum albumin: a spectroscopic study. Banerjee A; Basu K; Sengupta PK J Photochem Photobiol B; 2008 Jan; 90(1):33-40. PubMed ID: 18068375 [TBL] [Abstract][Full Text] [Related]
4. Study of microheterogeneous environment of protein Human Serum Albumin by an extrinsic fluorescent reporter: a spectroscopic study in combination with Molecular Docking and Molecular Dynamics Simulation. Jana S; Dalapati S; Ghosh S; Guchhait N J Photochem Photobiol B; 2012 Jul; 112():48-58. PubMed ID: 22575346 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the myricetin-human serum albumin complex by spectroscopic and molecular modeling approaches. Qin C; Xie MX; Liu Y Biomacromolecules; 2007 Jul; 8(7):2182-9. PubMed ID: 17559264 [TBL] [Abstract][Full Text] [Related]
6. Energy transfer to a proton-transfer fluorescence probe: tryptophan to a flavonol in human serum albumin. Sytnik A; Litvinyuk I Proc Natl Acad Sci U S A; 1996 Nov; 93(23):12959-63. PubMed ID: 8917526 [TBL] [Abstract][Full Text] [Related]
7. Binding of the bioflavonoid robinetin with model membranes and hemoglobin: Inhibition of lipid peroxidation and protein glycosylation. Chaudhuri S; Pahari B; Sengupta B; Sengupta PK J Photochem Photobiol B; 2010 Jan; 98(1):12-9. PubMed ID: 19914085 [TBL] [Abstract][Full Text] [Related]
8. Binding of quercetin with human serum albumin: a critical spectroscopic study. Sengupta B; Sengupta PK Biopolymers; 2003; 72(6):427-34. PubMed ID: 14587065 [TBL] [Abstract][Full Text] [Related]
9. Molecular interaction study of flavonoid derivative 3d with human serum albumin using multispectroscopic and molecular modeling approach. Wei J; Jin F; Wu Q; Jiang Y; Gao D; Liu H Talanta; 2014 Aug; 126():116-21. PubMed ID: 24881541 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic studies on human serum albumin and methemalbumin: optical, steady-state, and picosecond time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin. Kamal JK; Behere DV J Biol Inorg Chem; 2002 Mar; 7(3):273-83. PubMed ID: 11935351 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic investigation on the interaction of 3,7-dihydroxyflavone with different isomers of human serum albumin. Ma J; Liu Y; Chen L; Xie Y; Wang LY; Xie MX Food Chem; 2012 May; 132(1):663-70. PubMed ID: 26434347 [TBL] [Abstract][Full Text] [Related]
12. Study on the interaction of the epilepsy drug, zonisamide with human serum albumin (HSA) by spectroscopic and molecular docking techniques. Shahabadi N; Khorshidi A; Moghadam NH Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():627-32. PubMed ID: 23811149 [TBL] [Abstract][Full Text] [Related]
14. Binding of antioxidant flavone isovitexin to human serum albumin investigated by experimental and computational assays. Caruso ÍP; Vilegas W; de Souza FP; Fossey MA; Cornélio ML J Pharm Biomed Anal; 2014 Sep; 98():100-6. PubMed ID: 24905290 [TBL] [Abstract][Full Text] [Related]
15. Study of fluorescence probe transfer mechanism based on a new type of excited-state intramolecular proton transfer. Dai Y; Zhao J; Cui Y; Wang Q; Song P; Ma F; Zhao Y Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():76-80. PubMed ID: 25748984 [TBL] [Abstract][Full Text] [Related]
16. Interplay between excited-state intramolecular proton transfer and charge transfer in flavonols and their use as protein-binding-site fluorescence probes. Sytnik A; Gormin D; Kasha M Proc Natl Acad Sci U S A; 1994 Dec; 91(25):11968-72. PubMed ID: 7991566 [TBL] [Abstract][Full Text] [Related]
17. Exploring binding properties of sertraline with human serum albumin: Combination of spectroscopic and molecular modeling studies. Shahlaei M; Rahimi B; Nowroozi A; Ashrafi-Kooshk MR; Sadrjavadi K; Khodarahmi R Chem Biol Interact; 2015 Dec; 242():235-46. PubMed ID: 26471709 [TBL] [Abstract][Full Text] [Related]
18. Energy transfer photophysics from serum albumins to sequestered 3-hydroxy-2-naphthoic acid, an excited state intramolecular proton-transfer probe. Sardar PS; Samanta S; Maity SS; Dasgupta S; Ghosh S J Phys Chem B; 2008 Mar; 112(11):3451-61. PubMed ID: 18293954 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence modulation of excited state intramolecular proton transfer (ESIPT) probe 3-formyl-4-hydroxy benzoic acid encapsulated in the protein binding domain of serum albumins: a combined spectroscopic and molecular docking study. Rohman MA; Saha K; Mitra S J Biomol Struct Dyn; 2019 Nov; 37(18):4737-4746. PubMed ID: 30582409 [No Abstract] [Full Text] [Related]
20. The investigation of the binding behavior between ethyl maltol and human serum albumin by multi-spectroscopic methods and molecular docking. Yue Y; Liu J; Yao M; Yao X; Fan J; Ji H Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():316-23. PubMed ID: 22705675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]