These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25313920)

  • 1. Kinetic intermediates in amyloid assembly.
    Liang C; Ni R; Smith JE; Childers WS; Mehta AK; Lynn DG
    J Am Chem Soc; 2014 Oct; 136(43):15146-9. PubMed ID: 25313920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid.
    Chimon S; Shaibat MA; Jones CR; Calero DC; Aizezi B; Ishii Y
    Nat Struct Mol Biol; 2007 Dec; 14(12):1157-64. PubMed ID: 18059284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation kinetics and structural features of Beta-amyloid aggregates by sedimented solute NMR.
    Bertini I; Gallo G; Korsak M; Luchinat C; Mao J; Ravera E
    Chembiochem; 2013 Sep; 14(14):1891-7. PubMed ID: 23821412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new structural model of Aβ40 fibrils.
    Bertini I; Gonnelli L; Luchinat C; Mao J; Nesi A
    J Am Chem Soc; 2011 Oct; 133(40):16013-22. PubMed ID: 21882806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific identification of non-beta-strand conformations in Alzheimer's beta-amyloid fibrils by solid-state NMR.
    Antzutkin ON; Balbach JJ; Tycko R
    Biophys J; 2003 May; 84(5):3326-35. PubMed ID: 12719262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR.
    Petkova AT; Ishii Y; Balbach JJ; Antzutkin ON; Leapman RD; Delaglio F; Tycko R
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16742-7. PubMed ID: 12481027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular tethering effect of C-terminus of amyloid peptide aβ42.
    Liu L; Niu L; Xu M; Han Q; Duan H; Dong M; Besenbacher F; Wang C; Yang Y
    ACS Nano; 2014 Sep; 8(9):9503-10. PubMed ID: 25192556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural heterogeneity in familial Alzheimer's disease mutants of amyloid-beta peptides.
    Chong SH; Yim J; Ham S
    Mol Biosyst; 2013 May; 9(5):997-1003. PubMed ID: 23358498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly of Aβ proceeds via monomeric nuclei.
    Ferrone FA
    J Mol Biol; 2015 Jan; 427(2):287-90. PubMed ID: 25451026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase networks of cross-β peptide assemblies.
    Childers WS; Anthony NR; Mehta AK; Berland KM; Lynn DG
    Langmuir; 2012 Apr; 28(15):6386-95. PubMed ID: 22439620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis.
    Kirkitadze MD; Condron MM; Teplow DB
    J Mol Biol; 2001 Oct; 312(5):1103-19. PubMed ID: 11580253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial inclusion bodies of Alzheimer's disease β-amyloid peptides can be employed to study native-like aggregation intermediate states.
    Dasari M; Espargaro A; Sabate R; Lopez del Amo JM; Fink U; Grelle G; Bieschke J; Ventura S; Reif B
    Chembiochem; 2011 Feb; 12(3):407-23. PubMed ID: 21290543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers.
    Wang Q; Shah N; Zhao J; Wang C; Zhao C; Liu L; Li L; Zhou F; Zheng J
    Phys Chem Chem Phys; 2011 Sep; 13(33):15200-10. PubMed ID: 21769359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide and protein mimetics inhibiting amyloid beta-peptide aggregation.
    Takahashi T; Mihara H
    Acc Chem Res; 2008 Oct; 41(10):1309-18. PubMed ID: 18937396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hexameric peptide barrel as building block of amyloid-β protofibrils.
    Lendel C; Bjerring M; Dubnovitsky A; Kelly RT; Filippov A; Antzutkin ON; Nielsen NC; Härd T
    Angew Chem Int Ed Engl; 2014 Nov; 53(47):12756-60. PubMed ID: 25256598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters.
    Matsuzaki K
    Acc Chem Res; 2014 Aug; 47(8):2397-404. PubMed ID: 25029558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding stability of amyloid-beta 40 monomer is an important determinant of the nucleation kinetics in fibrillization.
    Ni CL; Shi HP; Yu HM; Chang YC; Chen YR
    FASEB J; 2011 Apr; 25(4):1390-401. PubMed ID: 21209058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clarifying the influence of core amino acid hydrophobicity, secondary structure propensity, and molecular volume on amyloid-β 16-22 self-assembly.
    Senguen FT; Doran TM; Anderson EA; Nilsson BL
    Mol Biosyst; 2011 Feb; 7(2):497-510. PubMed ID: 21135968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Cu-amyloid-β by using bifunctional peptides with β-sheet breaker and chelator moieties.
    Jensen M; Canning A; Chiha S; Bouquerel P; Pedersen JT; Østergaard J; Cuvillier O; Sasaki I; Hureau C; Faller P
    Chemistry; 2012 Apr; 18(16):4836-9. PubMed ID: 22422637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.