These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25314323)

  • 1. Reversible unfolding-refolding of rubredoxin: a single-molecule force spectroscopy study.
    Zheng P; Wang Y; Li H
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14060-3. PubMed ID: 25314323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single molecule force spectroscopy reveals that iron is released from the active site of rubredoxin by a stochastic mechanism.
    Zheng P; Takayama SJ; Mauk AG; Li H
    J Am Chem Soc; 2013 May; 135(21):7992-8000. PubMed ID: 23627554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single molecule force spectroscopy reveals the molecular mechanical anisotropy of the FeS4 metal center in rubredoxin.
    Zheng P; Chou CC; Guo Y; Wang Y; Li H
    J Am Chem Soc; 2013 Nov; 135(47):17783-92. PubMed ID: 24171546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single molecule force spectroscopy reveals that a two-coordinate ferric site is critical for the folding of holo-rubredoxin.
    Li J; Li H
    Nanoscale; 2020 Nov; 12(44):22564-22573. PubMed ID: 33169779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible Unfolding and Folding of the Metalloprotein Ferredoxin Revealed by Single-Molecule Atomic Force Microscopy.
    Lei H; Guo Y; Hu X; Hu C; Hu X; Li H
    J Am Chem Soc; 2017 Feb; 139(4):1538-1544. PubMed ID: 28075577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Observation of the Reversible Two-State Unfolding and Refolding of an α/β Protein by Single-Molecule Atomic Force Microscopy.
    He C; Hu C; Hu X; Hu X; Xiao A; Perkins TT; Li H
    Angew Chem Int Ed Engl; 2015 Aug; 54(34):9921-5. PubMed ID: 26136291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule.
    Zheng P; Arantes GM; Field MJ; Li H
    Nat Commun; 2015 Jun; 6():7569. PubMed ID: 26108369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurements of the mechanical stability of zinc-thiolate bonds in rubredoxin by single-molecule atomic force microscopy.
    Zheng P; Li H
    Biophys J; 2011 Sep; 101(6):1467-73. PubMed ID: 21943428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal stability of the [Fe(SCys)(4)] site in Clostridium pasteurianum rubredoxin: contributions of the local environment and Cys ligand protonation.
    Bonomi F; Burden AE; Eidsness MK; Fessas D; Iametti S; Kurtz DM; Mazzini S; Scott RA; Zeng Q
    J Biol Inorg Chem; 2002 Apr; 7(4-5):427-36. PubMed ID: 11941500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rubredoxin refolding on nanostructured hydrophobic surfaces: evidence for a new type of biomimetic chaperones.
    Miriani M; Iametti S; Kurtz DM; Bonomi F
    Proteins; 2014 Nov; 82(11):3154-62. PubMed ID: 25143010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen bond strength modulates the mechanical strength of ferric-thiolate bonds in rubredoxin.
    Zheng P; Takayama SJ; Mauk AG; Li H
    J Am Chem Soc; 2012 Mar; 134(9):4124-31. PubMed ID: 22309227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unfolding mechanism of rubredoxin from Pyrococcus furiosus.
    Cavagnero S; Zhou ZH; Adams MW; Chan SI
    Biochemistry; 1998 Mar; 37(10):3377-85. PubMed ID: 9521658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein.
    Dauter Z; Wilson KS; Sieker LC; Moulis JM; Meyer J
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8836-40. PubMed ID: 8799113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperthermophile protein behavior: partially-structured conformations of Pyrococcus furiosus rubredoxin monomers generated through forced cold-denaturation and refolding.
    Chandrayan SK; Prakash S; Ahmed S; Guptasarma P
    PLoS One; 2014; 9(3):e80014. PubMed ID: 24603413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unfolding pathway of CotA-laccase and the role of copper on the prevention of refolding through aggregation of the unfolded state.
    Fernandes AT; Lopes C; Martins LO; Melo EP
    Biochem Biophys Res Commun; 2012 Jun; 422(3):442-6. PubMed ID: 22579799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single Molecule Force Spectroscopy Studies on Metalloproteins: Opportunities and Challenges.
    Li H
    Langmuir; 2023 Jan; 39(4):1345-1353. PubMed ID: 36647634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the mechanism of rubredoxin thermal unfolding in the absence of salt bridges by temperature jump experiments.
    Henriques BJ; Saraiva LM; Gomes CM
    Biochem Biophys Res Commun; 2005 Aug; 333(3):839-44. PubMed ID: 15975557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical Unfolding Pathway of the High-Potential Iron-Sulfur Protein Revealed by Single-Molecule Atomic Force Microscopy: Toward a General Unfolding Mechanism for Iron-sulfur Proteins.
    Li J; Li H
    J Phys Chem B; 2018 Oct; 122(40):9340-9349. PubMed ID: 30212202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of the two-iron rubredoxin of Pseudomonas oleovorans determined by NMR spectroscopy and solution X-ray scattering and interactions with rubredoxin reductase.
    Perry A; Tambyrajah W; Grossmann JG; Lian LY; Scrutton NS
    Biochemistry; 2004 Mar; 43(11):3167-82. PubMed ID: 15023067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of rubredoxin from Desulfovibrio gigas to ultra-high 0.68 A resolution.
    Chen CJ; Lin YH; Huang YC; Liu MY
    Biochem Biophys Res Commun; 2006 Oct; 349(1):79-90. PubMed ID: 16930541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.