These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 25314371)
1. Designing RNA-based genetic control systems for efficient production from engineered metabolic pathways. Stevens JT; Carothers JM ACS Synth Biol; 2015 Feb; 4(2):107-15. PubMed ID: 25314371 [TBL] [Abstract][Full Text] [Related]
2. Model-driven engineering of RNA devices to quantitatively program gene expression. Carothers JM; Goler JA; Juminaga D; Keasling JD Science; 2011 Dec; 334(6063):1716-9. PubMed ID: 22194579 [TBL] [Abstract][Full Text] [Related]
3. Kinetic folding design of aptazyme-regulated expression devices as riboswitches for metabolic engineering. Sparkman-Yager D; Correa-Rojas RA; Carothers JM Methods Enzymol; 2015; 550():321-40. PubMed ID: 25605393 [TBL] [Abstract][Full Text] [Related]
4. Computational design of RNA parts, devices, and transcripts with kinetic folding algorithms implemented on multiprocessor clusters. Thimmaiah T; Voje WE; Carothers JM Methods Mol Biol; 2015; 1244():45-61. PubMed ID: 25487092 [TBL] [Abstract][Full Text] [Related]
5. Constraint-based modeling of heterologous pathways: application and experimental demonstration for overproduction of fatty acids in Escherichia coli. Ip K; Donoghue N; Kim MK; Lun DS Biotechnol Bioeng; 2014 Oct; 111(10):2056-66. PubMed ID: 24838438 [TBL] [Abstract][Full Text] [Related]
7. Analysis and design of a genetic circuit for dynamic metabolic engineering. Anesiadis N; Kobayashi H; Cluett WR; Mahadevan R ACS Synth Biol; 2013 Aug; 2(8):442-52. PubMed ID: 23654263 [TBL] [Abstract][Full Text] [Related]
8. SSDesign: Computational metabolic pathway design based on flux variability using elementary flux modes. Toya Y; Shiraki T; Shimizu H Biotechnol Bioeng; 2015 Apr; 112(4):759-68. PubMed ID: 25408191 [TBL] [Abstract][Full Text] [Related]
9. ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli. Xu P; Vansiri A; Bhan N; Koffas MA ACS Synth Biol; 2012 Jul; 1(7):256-66. PubMed ID: 23651248 [TBL] [Abstract][Full Text] [Related]
10. Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways. Cress BF; Trantas EA; Ververidis F; Linhardt RJ; Koffas MA Curr Opin Biotechnol; 2015 Dec; 36():205-14. PubMed ID: 26453934 [TBL] [Abstract][Full Text] [Related]
11. Integration of systems biology with bioprocess engineering: L: -threonine production by systems metabolic engineering of Escherichia coli. Lee SY; Park JH Adv Biochem Eng Biotechnol; 2010; 120():1-19. PubMed ID: 20140658 [TBL] [Abstract][Full Text] [Related]
12. Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli. Srirangan K; Liu X; Westbrook A; Akawi L; Pyne ME; Moo-Young M; Chou CP Appl Microbiol Biotechnol; 2014 Nov; 98(22):9499-515. PubMed ID: 25301579 [TBL] [Abstract][Full Text] [Related]
13. Development and application of efficient pathway enumeration algorithms for metabolic engineering applications. Liu F; Vilaça P; Rocha I; Rocha M Comput Methods Programs Biomed; 2015 Feb; 118(2):134-46. PubMed ID: 25580014 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of Escherichia coli for the production of fumaric acid. Song CW; Kim DI; Choi S; Jang JW; Lee SY Biotechnol Bioeng; 2013 Jul; 110(7):2025-34. PubMed ID: 23436277 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Escherichia coli for the production of phenol from glucose. Kim B; Park H; Na D; Lee SY Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680 [TBL] [Abstract][Full Text] [Related]
16. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints. Yen JY; Nazem-Bokaee H; Freedman BG; Athamneh AI; Senger RS Biotechnol J; 2013 May; 8(5):581-94. PubMed ID: 23460591 [TBL] [Abstract][Full Text] [Related]
17. Application of metabolic engineering for the biotechnological production of L-valine. Oldiges M; Eikmanns BJ; Blombach B Appl Microbiol Biotechnol; 2014 Jul; 98(13):5859-70. PubMed ID: 24816722 [TBL] [Abstract][Full Text] [Related]
18. A kinetic-based approach to understanding heterologous mevalonate pathway function in E. coli. Weaver LJ; Sousa MM; Wang G; Baidoo E; Petzold CJ; Keasling JD Biotechnol Bioeng; 2015 Jan; 112(1):111-9. PubMed ID: 24981116 [TBL] [Abstract][Full Text] [Related]
19. In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Zhu F; Zhong X; Hu M; Lu L; Deng Z; Liu T Biotechnol Bioeng; 2014 Jul; 111(7):1396-405. PubMed ID: 24473754 [TBL] [Abstract][Full Text] [Related]
20. Engineering static and dynamic control of synthetic pathways. Holtz WJ; Keasling JD Cell; 2010 Jan; 140(1):19-23. PubMed ID: 20085699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]