These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 25314374)

  • 1. Surface energetics of the hydroxyapatite nanocrystal-water interface: a molecular dynamics study.
    Zhao W; Xu Z; Yang Y; Sahai N
    Langmuir; 2014 Nov; 30(44):13283-92. PubMed ID: 25314374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level.
    Pan H; Tao J; Xu X; Tang R
    Langmuir; 2007 Aug; 23(17):8972-81. PubMed ID: 17658861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small molecule-mediated control of hydroxyapatite growth: free energy calculations benchmarked to density functional theory.
    Xu Z; Yang Y; Wang Z; Mkhonto D; Shang C; Liu ZP; Cui Q; Sahai N
    J Comput Chem; 2014 Jan; 35(1):70-81. PubMed ID: 24272540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of positively charged calcium hydroxyapatite nano-crystals and their adsorption behavior of proteins.
    Kandori K; Oda S; Fukusumi M; Morisada Y
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):140-5. PubMed ID: 19515538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption.
    Kandori K; Kuroda T; Togashi S; Katayama E
    J Phys Chem B; 2011 Feb; 115(4):653-9. PubMed ID: 21162543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscopy reveals hydroxyapatite-citrate interfacial structure at the atomic level.
    Jiang W; Pan H; Cai Y; Tao J; Liu P; Xu X; Tang R
    Langmuir; 2008 Nov; 24(21):12446-51. PubMed ID: 18823133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A potential mechanism for amino acid-controlled crystal growth of hydroxyapatite.
    Wang Z; Xu Z; Zhao W; Sahai N
    J Mater Chem B; 2015 Dec; 3(47):9157-9167. PubMed ID: 32263130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cells Recognize and Prefer Bone-like Hydroxyapatite: Biochemical Understanding of Ultrathin Mineral Platelets in Bone.
    Liu C; Zhai H; Zhang Z; Li Y; Xu X; Tang R
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):29997-30004. PubMed ID: 27750425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thin Water Films at Multifaceted Hematite Particle Surfaces.
    Boily JF; Yeşilbaş M; Uddin MM; Baiqing L; Trushkina Y; Salazar-Alvarez G
    Langmuir; 2015 Dec; 31(48):13127-37. PubMed ID: 26559158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the nanoscale interfacial arrangement in mechanical strength of tropocollagen-hydroxyapatite-based hard biomaterials.
    Dubey DK; Tomar V
    Acta Biomater; 2009 Sep; 5(7):2704-16. PubMed ID: 19345162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mineralization of DNA into nanoparticles of hydroxyapatite.
    Bertran O; del Valle LJ; Revilla-López G; Chaves G; Cardús L; Casas MT; Casanovas J; Turon P; Puiggalí J; Alemán C
    Dalton Trans; 2014 Jan; 43(1):317-27. PubMed ID: 24105025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of water on the binding of glycosaminoglycan saccharides to hydroxyapatite surfaces: a molecular dynamics study.
    Ruiz Hernandez SE; Streeter I; de Leeuw NH
    Phys Chem Chem Phys; 2015 Sep; 17(34):22377-88. PubMed ID: 26247336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of adsorption and desorption of bone morphogenetic protein-2 on textured hydroxyapatite surfaces.
    Huang B; Lou Y; Li T; Lin Z; Sun S; Yuan Y; Liu C; Gu Y
    Acta Biomater; 2018 Oct; 80():121-130. PubMed ID: 30223095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates.
    Okada M; Furukawa K; Serizawa T; Yanagisawa Y; Tanaka H; Kawai T; Furuzono T
    Langmuir; 2009 Jun; 25(11):6300-6. PubMed ID: 19466784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of hydroxyapatite nanocrystals by grafting polymers containing phosphonic acid groups.
    Choi HW; Lee HJ; Kim KJ; Kim HM; Lee SC
    J Colloid Interface Sci; 2006 Dec; 304(1):277-81. PubMed ID: 17010357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite.
    Jäger C; Welzel T; Meyer-Zaika W; Epple M
    Magn Reson Chem; 2006 Jun; 44(6):573-80. PubMed ID: 16395729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homonuclear and heteronuclear NMR studies of a statherin fragment bound to hydroxyapatite crystals.
    Raghunathan V; Gibson JM; Goobes G; Popham JM; Louie EA; Stayton PS; Drobny GP
    J Phys Chem B; 2006 May; 110(18):9324-32. PubMed ID: 16671751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale hydroxyapatite particles for bone tissue engineering.
    Zhou H; Lee J
    Acta Biomater; 2011 Jul; 7(7):2769-81. PubMed ID: 21440094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic demineralization and oriented assembly of hydroxyapatite crystals in enamel: smart structures of biominerals.
    Pan H; Tao J; Yu X; Fu L; Zhang J; Zeng X; Xu G; Tang R
    J Phys Chem B; 2008 Jun; 112(24):7162-5. PubMed ID: 18503266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces.
    Shen JW; Wu T; Wang Q; Pan HH
    Biomaterials; 2008 Feb; 29(5):513-32. PubMed ID: 17988731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.