These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 25314427)
1. Large-order aspects of the δ expansion in low-dimensional Ising models. Yamada H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032139. PubMed ID: 25314427 [TBL] [Abstract][Full Text] [Related]
2. Ground-state morphologies in the random-field Ising model: scaling properties and non-Porod behavior. Shrivastav GP; Kumar M; Banerjee V; Puri S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032140. PubMed ID: 25314428 [TBL] [Abstract][Full Text] [Related]
3. Critical line of honeycomb-lattice anisotropic Ising antiferromagnets in a field. de Queiroz SL Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):024102. PubMed ID: 23496641 [TBL] [Abstract][Full Text] [Related]
4. 25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple-cubic lattice. Campostrini M; Pelissetto A; Rossi P; Vicari E Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066127. PubMed ID: 12188803 [TBL] [Abstract][Full Text] [Related]
5. Phase transitions in an Ising model on a Euclidean network. Chatterjee A; Sen P Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036109. PubMed ID: 17025710 [TBL] [Abstract][Full Text] [Related]
6. Triviality problem and high-temperature expansions of higher susceptibilities for the Ising and scalar-field models in four-, five-, and six-dimensional lattices. Butera P; Pernici M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021105. PubMed ID: 22463151 [TBL] [Abstract][Full Text] [Related]
7. Random site dilution properties of frustrated magnets on a hierarchical lattice. Fortin JY J Phys Condens Matter; 2013 Jul; 25(29):296004. PubMed ID: 23807800 [TBL] [Abstract][Full Text] [Related]
8. Simulated tempering and magnetizing: application of two-dimensional simulated tempering to the two-dimensional Ising model and its crossover. Nagai T; Okamoto Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056705. PubMed ID: 23214904 [TBL] [Abstract][Full Text] [Related]
10. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field. Korniss G; White CJ; Rikvold PA; Novotny MA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327 [TBL] [Abstract][Full Text] [Related]
11. Relations between short-range and long-range Ising models. Angelini MC; Parisi G; Ricci-Tersenghi F Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062120. PubMed ID: 25019738 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo study of the droplet formation-dissolution transition on different two-dimensional lattices. Nussbaumer A; Bittner E; Janke W Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041109. PubMed ID: 18517580 [TBL] [Abstract][Full Text] [Related]
13. Mixed Ising ferrimagnets with next-nearest-neighbour couplings on square lattices. Selke W; Ekiz C J Phys Condens Matter; 2011 Dec; 23(49):496002. PubMed ID: 22089828 [TBL] [Abstract][Full Text] [Related]
14. Microcanonical finite-size scaling in second-order phase transitions with diverging specific heat. Fernandez LA; Gordillo-Guerrero A; Martin-Mayor V; Ruiz-Lorenzo JJ Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051105. PubMed ID: 20364945 [TBL] [Abstract][Full Text] [Related]
15. Universality of a two-dimensional Ising ferromagnetic fluid near the second-order magnetic phase transition. Korneta W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041109. PubMed ID: 11690012 [TBL] [Abstract][Full Text] [Related]
16. Geometrical clusters in two-dimensional random-field Ising models. Környei L; Iglói F Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011131. PubMed ID: 17358134 [TBL] [Abstract][Full Text] [Related]
17. Comparative study of an Eden model for the irreversible growth of spins and the equilibrium Ising model. Candia J; Albano EV Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066127. PubMed ID: 11415193 [TBL] [Abstract][Full Text] [Related]
18. Effective ergodicity in single-spin-flip dynamics. Süzen M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032141. PubMed ID: 25314429 [TBL] [Abstract][Full Text] [Related]
19. Strong violation of critical phenomena universality: Wang-Landau study of the two-dimensional Blume-Capel model under bond randomness. Malakis A; Berker AN; Hadjiagapiou IA; Fytas NG Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011125. PubMed ID: 19257019 [TBL] [Abstract][Full Text] [Related]
20. Critical behavior of the mixed-spin Ising model with two competing dynamics. Godoy M; Figueiredo W Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026111. PubMed ID: 11863591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]