These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 25314447)
1. Transition from Arrhenius to non-Arrhenius temperature dependence of structural relaxation time in glass-forming liquids: continuous versus discontinuous scenario. Popova VA; Surovtsev NV Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032308. PubMed ID: 25314447 [TBL] [Abstract][Full Text] [Related]
2. Does Brillouin light scattering probe the primary glass transition process at temperatures well above glass transition? Voudouris P; Gomopoulos N; Le Grand A; Hadjichristidis N; Floudas G; Ediger MD; Fytas G J Chem Phys; 2010 Feb; 132(7):074906. PubMed ID: 20170250 [TBL] [Abstract][Full Text] [Related]
3. Reorientational dynamics in molecular liquids as revealed by dynamic light scattering: from boiling point to glass transition temperature. Schmidtke B; Petzold N; Kahlau R; Rössler EA J Chem Phys; 2013 Aug; 139(8):084504. PubMed ID: 24007015 [TBL] [Abstract][Full Text] [Related]
4. Temperature dependence of the Landau-Placzek ratio in glass forming liquids. Popova VA; Surovtsev NV J Chem Phys; 2011 Oct; 135(13):134510. PubMed ID: 21992327 [TBL] [Abstract][Full Text] [Related]
5. Pressure effects on the alpha and alpha' relaxations in polymethylphenylsiloxane. Kriegs H; Gapinski J; Meier G; Paluch M; Pawlus S; Patkowski A J Chem Phys; 2006 Mar; 124(10):104901. PubMed ID: 16542098 [TBL] [Abstract][Full Text] [Related]
6. Application of the entropy theory of glass formation to poly(alpha-olefins). Stukalin EB; Douglas JF; Freed KF J Chem Phys; 2009 Sep; 131(11):114905. PubMed ID: 19778147 [TBL] [Abstract][Full Text] [Related]
7. Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Mallamace F; Branca C; Corsaro C; Leone N; Spooren J; Chen SH; Stanley HE Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22457-62. PubMed ID: 21148100 [TBL] [Abstract][Full Text] [Related]
8. Changes in dynamic crossover with temperature and pressure in glass-forming diethyl phthalate. Pawlus S; Paluch M; Sekula M; Ngai KL; Rzoska SJ; Ziolo J Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021503. PubMed ID: 14524977 [TBL] [Abstract][Full Text] [Related]
9. Temperature dependence of the structural relaxation time in equilibrium below the nominal T(g): results from freestanding polymer films. Ngai KL; Capaccioli S; Paluch M; Prevosto D J Phys Chem B; 2014 May; 118(20):5608-14. PubMed ID: 24798795 [TBL] [Abstract][Full Text] [Related]
10. The Modified VFT law of glass former materials under pressure: Part II: Relation with the equation of state. Rault J Eur Phys J E Soft Matter; 2015 Aug; 38(8):91. PubMed ID: 26314261 [TBL] [Abstract][Full Text] [Related]
11. Qualitative change in structural dynamics of some glass-forming systems. Novikov VN; Sokolov AP Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062304. PubMed ID: 26764689 [TBL] [Abstract][Full Text] [Related]
12. From boiling point to glass transition temperature: transport coefficients in molecular liquids follow three-parameter scaling. Schmidtke B; Petzold N; Kahlau R; Hofmann M; Rössler EA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041507. PubMed ID: 23214591 [TBL] [Abstract][Full Text] [Related]
13. Signatures of spin-glass behaviour in PrIr2B2 and heavy fermion behaviour in PrIr2B2C. Anupam ; Anand VK; Hossain Z; Adroja DT; Geibel C J Phys Condens Matter; 2011 Sep; 23(37):376001. PubMed ID: 21878715 [TBL] [Abstract][Full Text] [Related]
14. Difference and similarity of dielectric relaxation processes among polyols. Minoguchi A; Kitai K; Nozaki R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031501. PubMed ID: 14524771 [TBL] [Abstract][Full Text] [Related]
15. Interfacial effects on vitrification of confined glass-forming liquids. Trofymluk O; Levchenko AA; Navrotsky A J Chem Phys; 2005 Nov; 123(19):194509. PubMed ID: 16321102 [TBL] [Abstract][Full Text] [Related]
16. Transition from single-molecule to cooperative dynamics in a simple glass former: Raman line-shape analysis. Surovtsev NV; Adichtchev SV; Malinovsky VK Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021502. PubMed ID: 17930039 [TBL] [Abstract][Full Text] [Related]
18. Diffusion-controlled and diffusionless crystal growth in liquid o-terphenyl near its glass transition temperature. Xi H; Sun Y; Yu L J Chem Phys; 2009 Mar; 130(9):094508. PubMed ID: 19275410 [TBL] [Abstract][Full Text] [Related]
19. Scaling of the hysteresis in the glass transition of glycerol with the temperature scanning rate. Wang YZ; Li Y; Zhang JX J Chem Phys; 2011 Mar; 134(11):114510. PubMed ID: 21428635 [TBL] [Abstract][Full Text] [Related]
20. Infrared spectroscopy study of structural changes in glass-forming salol. Baran J; Davydova NA Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031503. PubMed ID: 20365736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]