These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25314454)

  • 1. Crystallization of Brownian particles in thin systems constrained by walls.
    Fujine M; Sato M; Toyooka T; Katsuno H; Suzuki Y; Sawada T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032404. PubMed ID: 25314454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of container shape and walls on solidification of Brownian particles in a narrow system.
    Fujine M; Sato M; Katsuno H; Suzuki Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042401. PubMed ID: 24827254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Langevin dynamics simulations of a two-dimensional colloidal crystal under confinement and shear.
    Wilms D; Virnau P; Sengupta S; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061406. PubMed ID: 23005095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural origin of dynamic heterogeneity in three-dimensional colloidal glass formers and its link to crystal nucleation.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2010 Jun; 22(23):232102. PubMed ID: 21393759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brownian dynamics simulation of the crystallization dynamics of charged colloidal particles.
    Gu L; Xu S; Sun Z; Wang JT
    J Colloid Interface Sci; 2010 Oct; 350(2):409-16. PubMed ID: 20673671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of non-Brownian particle-based crystals.
    Lash MH; Fedorchak MV; Little SR; McCarthy JJ
    Langmuir; 2015 Jan; 31(3):898-905. PubMed ID: 24983125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exclusion of impurity particles in charged colloidal crystals.
    Yoshizawa K; Toyotama A; Okuzono T; Yamanaka J
    Soft Matter; 2014 May; 10(19):3357-61. PubMed ID: 24807633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion, relaxation dynamics, and diffusion processes in two-dimensional colloidal crystals confined between walls.
    Wilms D; Virnau P; Snook IK; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051404. PubMed ID: 23214781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal systems in three-dimensional microchannels: lattice control via channel width and external force.
    Schwierz N; Nielaba P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031401. PubMed ID: 21230071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Monte Carlo versus Brownian dynamics: A comparison for self-diffusion and crystallization in colloidal fluids.
    Sanz E; Marenduzzo D
    J Chem Phys; 2010 May; 132(19):194102. PubMed ID: 20499946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic structure and cluster formation in confined nanofluids under the action of an external force field.
    Ben-Abdallah P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041407. PubMed ID: 17155057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hindered Brownian diffusion in a square-shaped geometry.
    Gentile FS; De Santo I; D'Avino G; Rossi L; Romeo G; Greco F; Netti PA; Maffettone PL
    J Colloid Interface Sci; 2015 Jun; 447():25-32. PubMed ID: 25689524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of a Brownian circle swimmer.
    van Teeffelen S; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):020101. PubMed ID: 18850771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical density functional theory for anisotropic colloidal particles.
    Rex M; Wensink HH; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021403. PubMed ID: 17930035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal crystallization in the quasi-two-dimensional induced by electrolyte gradients.
    Reinmüller A; Oğuz EC; Messina R; Löwen H; Schöpe HJ; Palberg T
    J Chem Phys; 2012 Apr; 136(16):164505. PubMed ID: 22559494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How does a thermal binary crystal break under shear?
    Horn T; Löwen H
    J Chem Phys; 2014 Dec; 141(22):224505. PubMed ID: 25494758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal cluster crystallization dynamics.
    Beltran-Villegas DJ; Sehgal RM; Maroudas D; Ford DM; Bevan MA
    J Chem Phys; 2012 Oct; 137(13):134901. PubMed ID: 23039607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropy-Driven Heterogeneous Crystallization of Hard-Sphere Chains under Unidimensional Confinement.
    Ramos PM; Herranz M; Foteinopoulou K; Karayiannis NC; Laso M
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33919100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induced crystallization of single-chain polyethylene on a graphite surface: molecular dynamics simulation.
    Yang H; Zhao XJ; Sun M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011803. PubMed ID: 21867201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase diagram for stimulus-responsive materials containing dipolar colloidal particles.
    Goyal A; Hall CK; Velev OD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031401. PubMed ID: 18517375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.