These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25314505)

  • 1. Synchronization-desynchronization transitions in complex networks: an interplay of distributed time delay and inhibitory nodes.
    Wille C; Lehnert J; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032908. PubMed ID: 25314505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronization of networks of oscillators with distributed delay coupling.
    Kyrychko YN; Blyuss KB; Schöll E
    Chaos; 2014 Dec; 24(4):043117. PubMed ID: 25554037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplitude and phase effects on the synchronization of delay-coupled oscillators.
    D'Huys O; Vicente R; Danckaert J; Fischer I
    Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaos synchronization by resonance of multiple delay times.
    Martin MJ; D'Huys O; Lauerbach L; Korutcheva E; Kinzel W
    Phys Rev E; 2016 Feb; 93(2):022206. PubMed ID: 26986330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial synchronization and partial amplitude death in mesoscale network motifs.
    Poel W; Zakharova A; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022915. PubMed ID: 25768577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states.
    Choe CU; Dahms T; Hövel P; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):025205. PubMed ID: 20365621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronous patterns in complex systems.
    Fu C; Zhang H; Zhan M; Wang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066208. PubMed ID: 23005197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization transition in networked chaotic oscillators: the viewpoint from partial synchronization.
    Fu C; Lin W; Huang L; Wang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052908. PubMed ID: 25353862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bipartite networks of oscillators with distributed delays: Synchronization branches and multistability.
    Punetha N; Ramaswamy R; Atay FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042906. PubMed ID: 25974561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inducing isolated-desynchronization states in complex network of coupled chaotic oscillators.
    Lin W; Li H; Ying H; Wang X
    Phys Rev E; 2016 Dec; 94(6-1):062303. PubMed ID: 28085292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronization properties of network motifs: influence of coupling delay and symmetry.
    D'Huys O; Vicente R; Erneux T; Danckaert J; Fischer I
    Chaos; 2008 Sep; 18(3):037116. PubMed ID: 19045490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized and partial synchronization of coupled neural networks.
    Pasemann F; Wennekers T
    Network; 2000 Feb; 11(1):41-61. PubMed ID: 10735528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiphase synchronization in multiplex networks with attractive and repulsive interactions.
    Chowdhury SN; Rakshit S; Buldú JM; Ghosh D; Hens C
    Phys Rev E; 2021 Mar; 103(3-1):032310. PubMed ID: 33862752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplitude and phase dynamics in oscillators with distributed-delay coupling.
    Kyrychko YN; Blyuss KB; Schöll E
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120466. PubMed ID: 23960224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators.
    Selivanov AA; Lehnert J; Dahms T; Hövel P; Fradkov AL; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016201. PubMed ID: 22400637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization in asymmetrically coupled networks with node balance.
    Belykh I; Belykh V; Hasler M
    Chaos; 2006 Mar; 16(1):015102. PubMed ID: 16599768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobility and density induced amplitude death in metapopulation networks of coupled oscillators.
    Shen C; Chen H; Hou Z
    Chaos; 2014 Dec; 24(4):043125. PubMed ID: 25554045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exponential stability of synchronization in asymmetrically coupled dynamical networks.
    Li Z
    Chaos; 2008 Jun; 18(2):023124. PubMed ID: 18601491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Onset of chaotic phase synchronization in complex networks of coupled heterogeneous oscillators.
    Ricci F; Tonelli R; Huang L; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):027201. PubMed ID: 23005889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization in complex networks with a modular structure.
    Park K; Lai YC; Gupte S; Kim JW
    Chaos; 2006 Mar; 16(1):015105. PubMed ID: 16599771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.