These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25314530)

  • 21. Study of a simple model for the transition between the ballistic and the diffusive regimes in diffusive media.
    Ben I; Layosh YY; Granot E
    J Biomed Opt; 2016 Jun; 21(6):66004. PubMed ID: 27271889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between comoving magnetic microswimmers.
    Keaveny EE; Maxey MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041910. PubMed ID: 18517659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detention Times of Microswimmers Close to Surfaces: Influence of Hydrodynamic Interactions and Noise.
    Schaar K; Zöttl A; Stark H
    Phys Rev Lett; 2015 Jul; 115(3):038101. PubMed ID: 26230827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of hydrodynamics on effective interactions in suspensions of active and passive matter.
    Krafnick RC; García AE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022308. PubMed ID: 25768506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrodynamic dispersion within porous biofilms.
    Davit Y; Byrne H; Osborne J; Pitt-Francis J; Gavaghan D; Quintard M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012718. PubMed ID: 23410370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monte Carlo uncertainty analysis of a diffusion model for the assessment of halogen gas exposure during dosing of brominators.
    Shade WD; Jayjock MA
    Am Ind Hyg Assoc J; 1997 Jun; 58(6):418-24. PubMed ID: 9183836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of margination in confined flows of blood and other multicomponent suspensions.
    Kumar A; Graham MD
    Phys Rev Lett; 2012 Sep; 109(10):108102. PubMed ID: 23005332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Viscosity of bacterial suspensions: hydrodynamic interactions and self-induced noise.
    Ryan SD; Haines BM; Berlyand L; Ziebert F; Aranson IS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):050904. PubMed ID: 21728480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrodynamic interaction of swimming organisms in an inertial regime.
    Li G; Ostace A; Ardekani AM
    Phys Rev E; 2016 Nov; 94(5-1):053104. PubMed ID: 27967048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. General aspects of hydrodynamic interactions between three-sphere low-Reynolds-number swimmers.
    Farzin M; Ronasi K; Najafi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061914. PubMed ID: 23005134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collective Motion of Microorganisms in a Viscoelastic Fluid.
    Li G; Ardekani AM
    Phys Rev Lett; 2016 Sep; 117(11):118001. PubMed ID: 27661719
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Suspension biomechanics of swimming microbes.
    Ishikawa T
    J R Soc Interface; 2009 Oct; 6(39):815-34. PubMed ID: 19674997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach.
    Yariv E; Schnitzer O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032115. PubMed ID: 25314403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrodynamic phase locking of swimming microorganisms.
    Elfring GJ; Lauga E
    Phys Rev Lett; 2009 Aug; 103(8):088101. PubMed ID: 19792766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diffusion of Ellipsoids in Bacterial Suspensions.
    Peng Y; Lai L; Tai YS; Zhang K; Xu X; Cheng X
    Phys Rev Lett; 2016 Feb; 116(6):068303. PubMed ID: 26919019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emergence of coherent structures and large-scale flows in motile suspensions.
    Saintillan D; Shelley MJ
    J R Soc Interface; 2012 Mar; 9(68):571-85. PubMed ID: 21865254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Entrainment dominates the interaction of microalgae with micron-sized objects.
    Jeanneret R; Pushkin DO; Kantsler V; Polin M
    Nat Commun; 2016 Aug; 7():12518. PubMed ID: 27535609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Turbulent fluid acceleration generates clusters of gyrotactic microorganisms.
    De Lillo F; Cencini M; Durham WM; Barry M; Stocker R; Climent E; Boffetta G
    Phys Rev Lett; 2014 Jan; 112(4):044502. PubMed ID: 24580457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of viscoelasticity on the collective behavior of swimming microorganisms.
    Bozorgi Y; Underhill PT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061901. PubMed ID: 22304110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrodynamic analysis of flagellated bacteria swimming near one and between two no-slip plane boundaries.
    Shum H; Gaffney EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033012. PubMed ID: 25871207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.