These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 25314646)
1. A molecular copper catalyst for electrochemical water reduction with a large hydrogen-generation rate constant in aqueous solution. Zhang P; Wang M; Yang Y; Yao T; Sun L Angew Chem Int Ed Engl; 2014 Dec; 53(50):13803-7. PubMed ID: 25314646 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical and CD-spectroelectrochemical studies of the interaction between BSA and the complex [Cu(Bztpen)] Ocampo-Hernández J; de Jesús Gómez-Guzmán J; Cruz-Ramírez M; Rebolledo-Chávez JPF; Mendoza A; Moreno-Esparza R; Ortiz-Frade L J Inorg Biochem; 2022 Dec; 237():111994. PubMed ID: 36126431 [TBL] [Abstract][Full Text] [Related]
3. The mechanism of hydrogen evolution in Cu(bztpen)-catalysed water reduction: a DFT study. Liao RZ; Wang M; Sun L; Siegbahn PE Dalton Trans; 2015 Jun; 44(21):9736-9. PubMed ID: 25928325 [TBL] [Abstract][Full Text] [Related]
4. Improvement of Electrochemical Water Oxidation by Fine-Tuning the Structure of Tetradentate N Shen J; Wang M; Gao J; Han H; Liu H; Sun L ChemSusChem; 2017 Nov; 10(22):4581-4588. PubMed ID: 28868648 [TBL] [Abstract][Full Text] [Related]
5. A binuclear iron-thiolate catalyst for electrochemical hydrogen production in aqueous micellar solution. Quentel F; Passard G; Gloaguen F Chemistry; 2012 Oct; 18(42):13473-9. PubMed ID: 22968711 [TBL] [Abstract][Full Text] [Related]
6. Single-site copper(II) water oxidation electrocatalysis: rate enhancements with HPO₄²⁻ as a proton acceptor at pH 8. Coggins MK; Zhang MT; Chen Z; Song N; Meyer TJ Angew Chem Int Ed Engl; 2014 Nov; 53(45):12226-30. PubMed ID: 25243584 [TBL] [Abstract][Full Text] [Related]
7. Mechanistic Insight into the O Gorantla KR; Mallik BS J Phys Chem A; 2021 Jul; 125(29):6461-6473. PubMed ID: 34282907 [TBL] [Abstract][Full Text] [Related]
8. Copper-based electrocatalyst for hydrogen evolution in water. Abudayyeh AM; Bennington MS; Hamonnet J; Marshall AT; Brooker S Dalton Trans; 2024 Apr; 53(14):6207-6214. PubMed ID: 38483208 [TBL] [Abstract][Full Text] [Related]
9. Solid- and solution-state studies of the novel mu-dicyanamide-bridged dinuclear spin-crossover system {[(Fe(bztpen)]2[mu-N(CN)2]}(PF6)3 x n H2O. Ortega-Villar N; Thompson AL; Muñoz MC; Ugalde-Saldívar VM; Goeta AE; Moreno-Esparza R; Real JA Chemistry; 2005 Sep; 11(19):5721-34. PubMed ID: 16028299 [TBL] [Abstract][Full Text] [Related]
10. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. Manthiram K; Beberwyck BJ; Alivisatos AP J Am Chem Soc; 2014 Sep; 136(38):13319-25. PubMed ID: 25137433 [TBL] [Abstract][Full Text] [Related]
11. Copper complexes as catalyst precursors in the electrochemical hydrogen evolution reaction. Kügler M; Scholz J; Kronz A; Siewert I Dalton Trans; 2016 Apr; 45(16):6974-82. PubMed ID: 26986849 [TBL] [Abstract][Full Text] [Related]
12. Differences in proton-coupled electron-transfer reactions of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) between buffered and unbuffered aqueous solutions. Tan SL; Kan JM; Webster RD J Phys Chem B; 2013 Nov; 117(44):13755-66. PubMed ID: 24079606 [TBL] [Abstract][Full Text] [Related]
13. Deciphering Electrocatalytic Hydrogen Production in Water Through a Bioinspired Water-Stable Copper(II) Complex Adorned with (N Diyali S; Saha S; Diyali N; Bhattacharjee A; Mallick A; Agrawalla SK; Purohit CS; Biswas B ChemSusChem; 2024 Oct; ():e202401089. PubMed ID: 39365613 [TBL] [Abstract][Full Text] [Related]
14. Fast Oxygen Reduction Catalyzed by a Copper(II) Tris(2-pyridylmethyl)amine Complex through a Stepwise Mechanism. Langerman M; Hetterscheid DGH Angew Chem Int Ed Engl; 2019 Sep; 58(37):12974-12978. PubMed ID: 31339205 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical water oxidation by in situ-generated copper oxide film from [Cu(TEOA)(H2O)2][SO4] complex. Li TT; Cao S; Yang C; Chen Y; Lv XJ; Fu WF Inorg Chem; 2015 Mar; 54(6):3061-7. PubMed ID: 25714621 [TBL] [Abstract][Full Text] [Related]
16. DNA-Cu(II) poly(amine) complex membrane as novel catalytic layer for highly sensitive amperometric determination of hydrogen peroxide. Gu T; Hasebe Y Biosens Bioelectron; 2006 May; 21(11):2121-8. PubMed ID: 16297613 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical behavior of the 1,10-phenanthroline ligand on a multiwalled carbon nanotube surface and its relevant electrochemistry for selective recognition of copper ion and hydrogen peroxide sensing. Gayathri P; Senthil Kumar A Langmuir; 2014 Sep; 30(34):10513-21. PubMed ID: 25119115 [TBL] [Abstract][Full Text] [Related]
18. Electrocatalytic Water Oxidation by a Water-Soluble Nickel Porphyrin Complex at Neutral pH with Low Overpotential. Han Y; Wu Y; Lai W; Cao R Inorg Chem; 2015 Jun; 54(11):5604-13. PubMed ID: 25985258 [TBL] [Abstract][Full Text] [Related]
19. Immobilization of [Cu(bpy)2]Br2 complex onto a glassy carbon electrode modified with alpha-SiMo12O40(4-) and single walled carbon nanotubes: application to nanomolar detection of hydrogen peroxide and bromate. Salimi A; Korani A; Hallaj R; Khoshnavazi R; Hadadzadeh H Anal Chim Acta; 2009 Mar; 635(1):63-70. PubMed ID: 19200480 [TBL] [Abstract][Full Text] [Related]
20. Low overpotential water oxidation at neutral pH catalyzed by a copper(ii) porphyrin. Liu Y; Han Y; Zhang Z; Zhang W; Lai W; Wang Y; Cao R Chem Sci; 2019 Mar; 10(9):2613-2622. PubMed ID: 30996977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]