These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25314665)

  • 1. Kenaf biomass biodecomposition by basidiomycetes and actinobacteria in submerged fermentation for production of carbohydrates and phenolic compounds.
    Brzonova I; Kozliak E; Kubátová A; Chebeir M; Qin W; Christopher L; Ji Y
    Bioresour Technol; 2014 Dec; 173():352-360. PubMed ID: 25314665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of lignin by fungi, bacteria and laccases.
    Asina F; Brzonova I; Voeller K; Kozliak E; Kubátová A; Yao B; Ji Y
    Bioresour Technol; 2016 Nov; 220():414-424. PubMed ID: 27598570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of microbial pretreatment of kenaf stalk by the white-rot fungus Pleurotus sajor-caju on bioconversion of fuel ethanol production].
    Ruan Q; Qi J; Hu K; Fang P; Lin H; Xu J; Tao A; Lin G; Yi L
    Sheng Wu Gong Cheng Xue Bao; 2011 Oct; 27(10):1464-71. PubMed ID: 22260063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential degradation of phenolic lignin units by two white rot fungi.
    Camarero S; Galletti GC; Martínez AT
    Appl Environ Microbiol; 1994 Dec; 60(12):4509-16. PubMed ID: 7811086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of wheat straw lignin by solid state fermentation with white-rot fungi.
    Dinis MJ; Bezerra RM; Nunes F; Dias AA; Guedes CV; Ferreira LM; Cone JW; Marques GS; Barros AR; Rodrigues MA
    Bioresour Technol; 2009 Oct; 100(20):4829-35. PubMed ID: 19450975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioremediation of lignosulphonates by lignin-degrading basidiomycetous fungi.
    Eugenio ME; Carbajo JM; Terrón MC; González AE; Villar JC
    Bioresour Technol; 2008 Jul; 99(11):4929-34. PubMed ID: 17945492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotechnological route for sustainable succinate production utilizing oil palm frond and kenaf as potential carbon sources.
    Luthfi AAI; Manaf SFA; Illias RM; Harun S; Mohammad AW; Jahim JM
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3055-3075. PubMed ID: 28280869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative studies on lignin and polycyclic aromatic hydrocarbons degradation by basidiomycetes fungi.
    Arun A; Eyini M
    Bioresour Technol; 2011 Sep; 102(17):8063-70. PubMed ID: 21683591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Fungal decomposition of oat straw during liquid and solid state fermentation].
    Stepanova EV; Koroleva OV; Vasil'chenko LG; Karapetian KN; Landesman EO; Iavmetdinov IS; Kozlov IuP; Rabinovich ML
    Prikl Biokhim Mikrobiol; 2003; 39(1):74-84. PubMed ID: 12625046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review.
    Monlau F; Sambusiti C; Barakat A; Quéméneur M; Trably E; Steyer JP; Carrère H
    Biotechnol Adv; 2014; 32(5):934-51. PubMed ID: 24780154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenols and lignin: Key players in reducing enzymatic hydrolysis yields of steam-pretreated biomass in presence of laccase.
    Oliva-Taravilla A; Tomás-Pejó E; Demuez M; González-Fernández C; Ballesteros M
    J Biotechnol; 2016 Jan; 218():94-101. PubMed ID: 26684987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.
    Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J
    Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradability of chlorine-free bleachery effluent lignins by two fungi: effects on lignin subunit type and on polymer molecular weight.
    Bergbauer M; Eggert C
    Can J Microbiol; 1994 Mar; 40(3):192-7. PubMed ID: 8012907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignocellulose degradation patterns, structural changes, and enzyme secretion by Inonotus obliquus on straw biomass under submerged fermentation.
    Xu X; Xu Z; Shi S; Lin M
    Bioresour Technol; 2017 Oct; 241():415-423. PubMed ID: 28582764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus.
    Okamoto K; Kanawaku R; Masumoto M; Yanase H
    Enzyme Microb Technol; 2012 Feb; 50(2):96-100. PubMed ID: 22226194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal decomposition of Abies needle and Betula leaf litter.
    Osono T; Takeda H
    Mycologia; 2006; 98(2):172-9. PubMed ID: 16894962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofuel production by liquefaction of kenaf (Hibiscus cannabinus L.) biomass.
    Meryemoğlu B; Hasanoğlu A; Irmak S; Erbatur O
    Bioresour Technol; 2014 Jan; 151():278-83. PubMed ID: 24262837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Winery biomass waste degradation by sequential sonication and mixed fungal enzyme treatments.
    Karpe AV; Dhamale VV; Morrison PD; Beale DJ; Harding IH; Palombo EA
    Fungal Genet Biol; 2017 May; 102():22-30. PubMed ID: 27599392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review.
    Lundell TK; Mäkelä MR; Hildén K
    J Basic Microbiol; 2010 Feb; 50(1):5-20. PubMed ID: 20175122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laccases for biorefinery applications: a critical review on challenges and perspectives.
    Roth S; Spiess AC
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.