These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 25314692)
1. Highly conductive Cu2-xS nanoparticle films through room-temperature processing and an order of magnitude enhancement of conductivity via electrophoretic deposition. Otelaja OO; Ha DH; Ly T; Zhang H; Robinson RD ACS Appl Mater Interfaces; 2014 Nov; 6(21):18911-20. PubMed ID: 25314692 [TBL] [Abstract][Full Text] [Related]
2. Cluster beam deposition of Cu(2-X)S nanoparticles into organic thin films. Majeski MW; Bolotin IL; Hanley L ACS Appl Mater Interfaces; 2014 Aug; 6(15):12901-8. PubMed ID: 24977326 [TBL] [Abstract][Full Text] [Related]
3. Low-temperature deposition of BaCuSF, a visible through mid-infrared p-type transparent conductor. Frantz JA; Nguyen VQ; Mäkinen AJ; Qadri SB; Myers JD; Sanghera JS Opt Express; 2013 Dec; 21(25):30674-82. PubMed ID: 24514643 [TBL] [Abstract][Full Text] [Related]
4. Overcoming Film Quality Issues for Conjugated Polymers Doped with F4TCNQ by Solution Sequential Processing: Hall Effect, Structural, and Optical Measurements. Scholes DT; Hawks SA; Yee PY; Wu H; Lindemuth JR; Tolbert SH; Schwartz BJ J Phys Chem Lett; 2015 Dec; 6(23):4786-93. PubMed ID: 26554820 [TBL] [Abstract][Full Text] [Related]
5. A General Method for High-Performance Li-Ion Battery Electrodes from Colloidal Nanoparticles without the Introduction of Binders or Conductive-Carbon Additives: The Cases of MnS, Cu(2-x)S, and Ge. Ha DH; Ly T; Caron JM; Zhang H; Fritz KE; Robinson RD ACS Appl Mater Interfaces; 2015 Nov; 7(45):25053-60. PubMed ID: 26535449 [TBL] [Abstract][Full Text] [Related]
6. Thiocyanate-capped nanocrystal colloids: vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids. Fafarman AT; Koh WK; Diroll BT; Kim DK; Ko DK; Oh SJ; Ye X; Doan-Nguyen V; Crump MR; Reifsnyder DC; Murray CB; Kagan CR J Am Chem Soc; 2011 Oct; 133(39):15753-61. PubMed ID: 21848336 [TBL] [Abstract][Full Text] [Related]
7. Electrophoretic Deposition of Aged and Charge Controlled Colloidal Copper Sulfide Nanoparticles. Park Y; Kang H; Jeong W; Son H; Ha DH Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33429956 [TBL] [Abstract][Full Text] [Related]
9. Electronic grade and flexible semiconductor film employing oriented attachment of colloidal ligand-free PbS and PbSe nanocrystals at room temperature. Shanker GS; Swarnkar A; Chatterjee A; Chakraborty S; Phukan M; Parveen N; Biswas K; Nag A Nanoscale; 2015 May; 7(20):9204-14. PubMed ID: 25926291 [TBL] [Abstract][Full Text] [Related]
10. Stoichiometric Doping of Highly Coupled Cu Lee M; Yang J; Lee H; Lee JI; Koirala AR; Park J; Jo H; Kim S; Park H; Kwak J; Yoo H; Huh W; Kang MS ACS Appl Mater Interfaces; 2021 Jun; 13(22):26330-26338. PubMed ID: 34037381 [TBL] [Abstract][Full Text] [Related]
11. Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films. Dharmadasa R; Jha M; Amos DA; Druffel T ACS Appl Mater Interfaces; 2013 Dec; 5(24):13227-34. PubMed ID: 24283767 [TBL] [Abstract][Full Text] [Related]
12. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature. Deng D; Jin Y; Cheng Y; Qi T; Xiao F ACS Appl Mater Interfaces; 2013 May; 5(9):3839-46. PubMed ID: 23578010 [TBL] [Abstract][Full Text] [Related]
13. Transparent conducting oxides: texture and microstructure effects on charge carrier mobility in MOCVD-derived CdO thin films grown with a thermally stable, low-melting precursor. Metz AW; Ireland JR; Zheng JG; Lobo RP; Yang Y; Ni J; Stern CL; Dravid VP; Bontemps N; Kannewurf CR; Poeppelmeier KR; Marks TJ J Am Chem Soc; 2004 Jul; 126(27):8477-92. PubMed ID: 15238005 [TBL] [Abstract][Full Text] [Related]
14. Enhanced Conductivity in CZTS/Cu(2-x)Se Nanocrystal Thin Films: Growth of a Conductive Shell. Korala L; McGoffin JT; Prieto AL ACS Appl Mater Interfaces; 2016 Feb; 8(7):4911-7. PubMed ID: 26745286 [TBL] [Abstract][Full Text] [Related]
15. Effects of polymerization media on the nanoscale conductivity and current-voltage characteristics of chemically synthesized polyaniline films. Chang SS; Wu CG J Phys Chem B; 2005 Oct; 109(39):18275-82. PubMed ID: 16853351 [TBL] [Abstract][Full Text] [Related]
17. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers. Allen R; Pan L; Fuller GG; Bao Z ACS Appl Mater Interfaces; 2014 Jul; 6(13):9966-74. PubMed ID: 24914703 [TBL] [Abstract][Full Text] [Related]
18. Yttrium Doped Copper (II) Oxide Hole Transport Material as Efficient Thin Film Transistor. Baig S; Kumar P; Ngai J; Li Y; Ahmed S Chemphyschem; 2020 May; 21(9):895-907. PubMed ID: 32107838 [TBL] [Abstract][Full Text] [Related]
19. Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance. Oh SJ; Berry NE; Choi JH; Gaulding EA; Paik T; Hong SH; Murray CB; Kagan CR ACS Nano; 2013 Mar; 7(3):2413-21. PubMed ID: 23368728 [TBL] [Abstract][Full Text] [Related]
20. High-mobility ultrathin semiconducting films prepared by spin coating. Mitzi DB; Kosbar LL; Murray CE; Copel M; Afzali A Nature; 2004 Mar; 428(6980):299-303. PubMed ID: 15029191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]