These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 25314692)
41. Elucidating the role of electrophoretic mobility for increasing yield in the electrophoretic deposition of nanomaterials. Tiwari P; Ferson ND; Andrew JS J Colloid Interface Sci; 2020 Jun; 570():109-115. PubMed ID: 32145650 [TBL] [Abstract][Full Text] [Related]
42. High strain sensitivity controlled by the surface density of platinum nanoparticles. Tanner JL; Mousadakos D; Giannakopoulos K; Skotadis E; Tsoukalas D Nanotechnology; 2012 Jul; 23(28):285501. PubMed ID: 22717393 [TBL] [Abstract][Full Text] [Related]
43. Highly disordered polymer field effect transistors: N-alkyl dithieno[3,2-b:2',3'-d]pyrrole-based copolymers with surprisingly high charge carrier mobilities. Liu J; Zhang R; Sauvé G; Kowalewski T; McCullough RD J Am Chem Soc; 2008 Oct; 130(39):13167-76. PubMed ID: 18767846 [TBL] [Abstract][Full Text] [Related]
44. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Stoumpos CC; Malliakas CD; Kanatzidis MG Inorg Chem; 2013 Aug; 52(15):9019-38. PubMed ID: 23834108 [TBL] [Abstract][Full Text] [Related]
45. Cu2Se nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction. Riha SC; Johnson DC; Prieto AL J Am Chem Soc; 2011 Feb; 133(5):1383-90. PubMed ID: 21033686 [TBL] [Abstract][Full Text] [Related]
46. Carbon quantum dot-based field-effect transistors and their ligand length-dependent carrier mobility. Kwon W; Do S; Won DC; Rhee SW ACS Appl Mater Interfaces; 2013 Feb; 5(3):822-7. PubMed ID: 23323938 [TBL] [Abstract][Full Text] [Related]
47. Directional Charge-Carrier Transport in Oriented Benzodithiophene Covalent Organic Framework Thin Films. Medina DD; Petrus ML; Jumabekov AN; Margraf JT; Weinberger S; Rotter JM; Clark T; Bein T ACS Nano; 2017 Mar; 11(3):2706-2713. PubMed ID: 28103436 [TBL] [Abstract][Full Text] [Related]
48. Spatial atomic layer deposition of zinc oxide thin films. Illiberi A; Roozeboom F; Poodt P ACS Appl Mater Interfaces; 2012 Jan; 4(1):268-72. PubMed ID: 22171693 [TBL] [Abstract][Full Text] [Related]
49. Atomic layer deposition of undoped TiO2 exhibiting p-type conductivity. Iancu AT; Logar M; Park J; Prinz FB ACS Appl Mater Interfaces; 2015 Mar; 7(9):5134-40. PubMed ID: 25569212 [TBL] [Abstract][Full Text] [Related]
50. The electrical conductivity of thin film donor doped hematite: from insulator to semiconductor by defect modulation. Engel J; Tuller HL Phys Chem Chem Phys; 2014 Jun; 16(23):11374-80. PubMed ID: 24797819 [TBL] [Abstract][Full Text] [Related]
51. Electron Scattering and Doping Mechanisms in Solid-Phase-Crystallized In2O3:H Prepared by Atomic Layer Deposition. Macco B; Knoops HC; Kessels WM ACS Appl Mater Interfaces; 2015 Aug; 7(30):16723-9. PubMed ID: 26168056 [TBL] [Abstract][Full Text] [Related]
52. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. Law M; Luther JM; Song Q; Hughes BK; Perkins CL; Nozik AJ J Am Chem Soc; 2008 May; 130(18):5974-85. PubMed ID: 18396872 [TBL] [Abstract][Full Text] [Related]
53. Gate-induced superconductivity in a solution-processed organic polymer film. Schön JH; Dodabalapur A; Bao Z; Kloc C; Schenker O; Batlogg B Nature; 2001 Mar; 410(6825):189-92. PubMed ID: 11242074 [TBL] [Abstract][Full Text] [Related]
54. Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films. Lin Q; Yun HJ; Liu W; Song HJ; Makarov NS; Isaienko O; Nakotte T; Chen G; Luo H; Klimov VI; Pietryga JM J Am Chem Soc; 2017 May; 139(19):6644-6653. PubMed ID: 28431206 [TBL] [Abstract][Full Text] [Related]
55. Solution-processed PEDOT:PSS films with conductivities as indium tin oxide through a treatment with mild and weak organic acids. Ouyang J ACS Appl Mater Interfaces; 2013 Dec; 5(24):13082-8. PubMed ID: 24308924 [TBL] [Abstract][Full Text] [Related]
56. Improvement of the thermoelectric power factor through anisotropic growth of nanostructured PbSe thin films. Qiu X; Zhao Y; Steward IM; Dyck JS; Burda C Dalton Trans; 2010 Jan; 39(4):1095-100. PubMed ID: 20066196 [TBL] [Abstract][Full Text] [Related]
57. Rapid two-step metallization through physicochemical conversion of Ag2O for printed "black" transparent conductive films. Shin DY; Yi GR; Lee D; Park J; Lee YB; Hwang I; Chun S Nanoscale; 2013 Jun; 5(11):5043-52. PubMed ID: 23640028 [TBL] [Abstract][Full Text] [Related]
58. Huge photoresistance in transparent and conductive indium titanium oxide films prepared by electron beam-physical vapor deposition. Martínez-Morillas R; Ramírez R; Sánchez-Marcos J; Fonda E; de Andrés A; Prieto C ACS Appl Mater Interfaces; 2014 Feb; 6(3):1781-7. PubMed ID: 24428380 [TBL] [Abstract][Full Text] [Related]
59. A codoping route to realize low resistive and stable p-type conduction in (Li, Ni):ZnO thin films grown by pulsed laser deposition. Kumar ES; Chatterjee J; Rama N; DasGupta N; Rao MS ACS Appl Mater Interfaces; 2011 Jun; 3(6):1974-9. PubMed ID: 21598966 [TBL] [Abstract][Full Text] [Related]
60. Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films. Urban JJ; Talapin DV; Shevchenko EV; Murray CB J Am Chem Soc; 2006 Mar; 128(10):3248-55. PubMed ID: 16522106 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]