These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport. Dille S; Kleinschnitz EM; Kontchou CW; Nölke T; Häcker G Infect Immun; 2015 Aug; 83(8):3268-80. PubMed ID: 26056386 [TBL] [Abstract][Full Text] [Related]
9. Chlamydia trachomatis CT229 Subverts Rab GTPase-Dependent CCV Trafficking Pathways to Promote Chlamydial Infection. Faris R; Merling M; Andersen SE; Dooley CA; Hackstadt T; Weber MM Cell Rep; 2019 Mar; 26(12):3380-3390.e5. PubMed ID: 30893609 [TBL] [Abstract][Full Text] [Related]
10. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. Hackstadt T; Rockey DD; Heinzen RA; Scidmore MA EMBO J; 1996 Mar; 15(5):964-77. PubMed ID: 8605892 [TBL] [Abstract][Full Text] [Related]
11. Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process. Grieshaber SS; Grieshaber NA; Hackstadt T J Cell Sci; 2003 Sep; 116(Pt 18):3793-802. PubMed ID: 12902405 [TBL] [Abstract][Full Text] [Related]
12. EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis. Subbarayal P; Karunakaran K; Winkler AC; Rother M; Gonzalez E; Meyer TF; Rudel T PLoS Pathog; 2015 Apr; 11(4):e1004846. PubMed ID: 25906164 [TBL] [Abstract][Full Text] [Related]
13. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis. Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221 [TBL] [Abstract][Full Text] [Related]
15. Akt Phosphorylation Influences Persistent Chlamydial Infection and Huang X; Tan J; Chen X; Liu M; Zhu H; Li W; He Z; Han J; Ma C Front Cell Infect Microbiol; 2021; 11():675890. PubMed ID: 34169005 [No Abstract] [Full Text] [Related]
16. The late endocytic Rab39a GTPase regulates the interaction between multivesicular bodies and chlamydial inclusions. Gambarte Tudela J; Capmany A; Romao M; Quintero C; Miserey-Lenkei S; Raposo G; Goud B; Damiani MT J Cell Sci; 2015 Aug; 128(16):3068-81. PubMed ID: 26163492 [TBL] [Abstract][Full Text] [Related]
17. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. Elwell CA; Jiang S; Kim JH; Lee A; Wittmann T; Hanada K; Melancon P; Engel JN PLoS Pathog; 2011 Sep; 7(9):e1002198. PubMed ID: 21909260 [TBL] [Abstract][Full Text] [Related]
18. The chlamydial deubiquitinase Cdu1 supports recruitment of Golgi vesicles to the inclusion. Auer D; Hügelschäffer SD; Fischer AB; Rudel T Cell Microbiol; 2020 May; 22(5):e13136. PubMed ID: 31677225 [TBL] [Abstract][Full Text] [Related]
19. Targeting of a chlamydial protease impedes intracellular bacterial growth. Christian JG; Heymann J; Paschen SA; Vier J; Schauenburg L; Rupp J; Meyer TF; Häcker G; Heuer D PLoS Pathog; 2011 Sep; 7(9):e1002283. PubMed ID: 21990969 [TBL] [Abstract][Full Text] [Related]
20. Chlamydia trachomatis utilizes the host cell microtubule network during early events of infection. Clausen JD; Christiansen G; Holst HU; Birkelund S Mol Microbiol; 1997 Aug; 25(3):441-9. PubMed ID: 9302007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]