These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 25315131)
21. Cross Talk between ARF1 and RhoA Coordinates the Formation of Cytoskeletal Scaffolds during Chlamydia Infection. Haines A; Wesolowski J; Ryan NM; Monteiro-Brás T; Paumet F mBio; 2021 Dec; 12(6):e0239721. PubMed ID: 34903051 [TBL] [Abstract][Full Text] [Related]
22. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells. van Ooij C; Apodaca G; Engel J Infect Immun; 1997 Feb; 65(2):758-66. PubMed ID: 9009339 [TBL] [Abstract][Full Text] [Related]
23. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. Scidmore MA; Fischer ER; Hackstadt T J Cell Biol; 1996 Jul; 134(2):363-74. PubMed ID: 8707822 [TBL] [Abstract][Full Text] [Related]
24. Multiple host proteins that function in phosphatidylinositol-4-phosphate metabolism are recruited to the chlamydial inclusion. Moorhead AM; Jung JY; Smirnov A; Kaufer S; Scidmore MA Infect Immun; 2010 May; 78(5):1990-2007. PubMed ID: 20231409 [TBL] [Abstract][Full Text] [Related]
25. The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229. Rzomp KA; Moorhead AR; Scidmore MA Infect Immun; 2006 Sep; 74(9):5362-73. PubMed ID: 16926431 [TBL] [Abstract][Full Text] [Related]
26. Host and Bacterial Glycolysis during Ende RJ; Derré I Infect Immun; 2020 Nov; 88(12):. PubMed ID: 32900818 [TBL] [Abstract][Full Text] [Related]
27. Rab11-family of interacting protein 2 associates with chlamydial inclusions through its Rab-binding domain and promotes bacterial multiplication. Leiva N; Capmany A; Damiani MT Cell Microbiol; 2013 Jan; 15(1):114-29. PubMed ID: 23006599 [TBL] [Abstract][Full Text] [Related]
29. Orchestration of the mammalian host cell glucose transporter proteins-1 and 3 by Chlamydia contributes to intracellular growth and infectivity. Wang X; Hybiske K; Stephens RS Pathog Dis; 2017 Nov; 75(8):. PubMed ID: 29040458 [TBL] [Abstract][Full Text] [Related]
30. Golgi fragmentation and sphingomyelin transport to Chlamydia trachomatis during penicillin-induced persistence do not depend on the cytosolic presence of the chlamydial protease CPAF. Dille S; Herbst K; Volceanov L; Nölke T; Kretz O; Häcker G PLoS One; 2014; 9(7):e103220. PubMed ID: 25068694 [TBL] [Abstract][Full Text] [Related]
31. Chlamydia trachomatis homotypic inclusion fusion is promoted by host microtubule trafficking. Richards TS; Knowlton AE; Grieshaber SS BMC Microbiol; 2013 Aug; 13():185. PubMed ID: 23919807 [TBL] [Abstract][Full Text] [Related]
32. Chlamydia trachomatis vacuole maturation in infected macrophages. Sun HS; Eng EW; Jeganathan S; Sin AT; Patel PC; Gracey E; Inman RD; Terebiznik MR; Harrison RE J Leukoc Biol; 2012 Oct; 92(4):815-27. PubMed ID: 22807527 [TBL] [Abstract][Full Text] [Related]
33. Rab6-mediated retrograde transport regulates inner nuclear membrane targeting of caveolin-2 in response to insulin. Jeong K; Kwon H; Lee J; Jang D; Hwang EM; Park JY; Pak Y Traffic; 2012 Sep; 13(9):1218-33. PubMed ID: 22607032 [TBL] [Abstract][Full Text] [Related]
34. CteG is a Chlamydia trachomatis effector protein that associates with the Golgi complex of infected host cells. Pais SV; Key CE; Borges V; Pereira IS; Gomes JP; Fisher DJ; Mota LJ Sci Rep; 2019 Apr; 9(1):6133. PubMed ID: 30992493 [TBL] [Abstract][Full Text] [Related]
35. Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network. Mital J; Miller NJ; Fischer ER; Hackstadt T Cell Microbiol; 2010 Sep; 12(9):1235-49. PubMed ID: 20331642 [TBL] [Abstract][Full Text] [Related]
36. Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Carabeo RA; Mead DJ; Hackstadt T Proc Natl Acad Sci U S A; 2003 May; 100(11):6771-6. PubMed ID: 12743366 [TBL] [Abstract][Full Text] [Related]
37. The Chlamydia trachomatis IncM Protein Interferes with Host Cell Cytokinesis, Centrosome Positioning, and Golgi Distribution and Contributes to the Stability of the Pathogen-Containing Vacuole. Luís MP; Pereira IS; Bugalhão JN; Simões CN; Mota C; Romão MJ; Mota LJ Infect Immun; 2023 Apr; 91(4):e0040522. PubMed ID: 36877064 [TBL] [Abstract][Full Text] [Related]
38. Fierce competition between Toxoplasma and Chlamydia for host cell structures in dually infected cells. Romano JD; de Beaumont C; Carrasco JA; Ehrenman K; Bavoil PM; Coppens I Eukaryot Cell; 2013 Feb; 12(2):265-77. PubMed ID: 23243063 [TBL] [Abstract][Full Text] [Related]
39. Targeting eukaryotic Rab proteins: a smart strategy for chlamydial survival and replication. Damiani MT; Gambarte Tudela J; Capmany A Cell Microbiol; 2014 Sep; 16(9):1329-38. PubMed ID: 24948448 [TBL] [Abstract][Full Text] [Related]
40. Microtubule-mediated and microtubule-independent transport of adenovirus type 5 in HEK293 cells. Yea C; Dembowy J; Pacione L; Brown M J Virol; 2007 Jul; 81(13):6899-908. PubMed ID: 17442712 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]