These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2531551)

  • 61. Arteriolar changes in nitric oxide activity and sensitivity during the course of streptozotocin-induced diabetes.
    van Dam B; Demirci C; Reitsma HJ; van Lambalgen AA; van den Bos GC; Tangelder GJ; Stehouwer CD
    Eur J Pharmacol; 2002 Nov; 455(1):43-51. PubMed ID: 12433593
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Involvement of thromboxane and leukotriene in arachidonate induced coronary constriction in diabetic rats.
    Takiguchi Y; Umemura K; Hashimoto H; Nakashima M
    Diabetologia; 1989 Jun; 32(6):337-41. PubMed ID: 2503411
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ozagrel reverses streptozotocin-induced constriction of arterioles in rat retina.
    Lee S; Morgan GA; Harris NR
    Microvasc Res; 2008 Nov; 76(3):217-23. PubMed ID: 18718478
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Microvascular sensitivity to PGE2 and PGI2 in skeletal muscle of decerebrate rat.
    Faber JE; Harris PD; Miller FN
    Am J Physiol; 1982 Dec; 243(6):H844-51. PubMed ID: 6756169
    [No Abstract]   [Full Text] [Related]  

  • 65. Role of prostaglandins and histamine in reactive hyperemia: in-vivo studies on single mesenteric arterioles.
    Altura BM
    Prostaglandins Med; 1978 Oct; 1(4):323-31. PubMed ID: 102004
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microvascular responses of intermediate-size arterioles on the cerebral surface of diabetic mice.
    Rosenblum WI; Levasseur JE
    Microvasc Res; 1984 Nov; 28(3):368-72. PubMed ID: 6596485
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The influence of extracellular calcium on microvascular tone in the rat cremaster muscle.
    Joshua IG; Fleming JT; Dowe JP
    Proc Soc Exp Biol Med; 1988 Dec; 189(3):344-52. PubMed ID: 3205884
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Impaired microvascular responses to acute hyperglycemia in type I diabetic rats.
    Renaudin C; Michoud E; Lagarde M; Wiernsperger N
    J Diabetes Complications; 1999; 13(1):39-44. PubMed ID: 10232708
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effects of prostaglandins on thrombus formation in mesenteric arterioles of rats.
    Suzuki T; Hayashi A; Takano S
    Tohoku J Exp Med; 1982 May; 137(1):65-71. PubMed ID: 7101287
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Intestinal microvascular growth during maturation in diabetic juvenile rats.
    Unthank JL; Bohlen HG
    Circ Res; 1988 Aug; 63(2):429-36. PubMed ID: 2969310
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cellular and vessel wall morphology of cerebral cortical arterioles after short-term diabetes in adult rats.
    Moore SA; Bohlen HG; Miller BG; Evan AP
    Blood Vessels; 1985; 22(6):265-77. PubMed ID: 2935212
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of fasting and streptozotocin-diabetes on the coronary flow in isolated rat hearts: A possible role of endogenous catecholamines and prostaglandins.
    Stam H; Hülsmann WC
    Basic Res Cardiol; 1977; 72(4):365-75. PubMed ID: 143275
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Decreased contractile response of peripheral arterioles to serotonin after CPB in patients with diabetes.
    Sabe SA; Feng J; Liu Y; Scrimgeour LA; Ehsan A; Sellke FW
    Surgery; 2018 Aug; 164(2):288-293. PubMed ID: 29759300
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Early arteriolar disturbances following streptozotocin-induced diabetes mellitus in adult mice.
    Bohlen HG; Niggl BA
    Microvasc Res; 1980 Jul; 20(1):19-29. PubMed ID: 6447829
    [No Abstract]   [Full Text] [Related]  

  • 75. Chronic Cognitive and Cerebrovascular Function after Mild Traumatic Brain Injury in Rats.
    Griffiths DR; Law LM; Young C; Fuentes A; Truran S; Karamanova N; Bell LC; Turner G; Emerson H; Mastroeni D; Gonzales RJ; Reaven PD; Quarles CC; Migrino RQ; Lifshitz J
    J Neurotrauma; 2022 Oct; 39(19-20):1429-1441. PubMed ID: 35593008
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Rho-kinase and the nitric oxide pathway modulate basilar arterial reactivity to acetylcholine and angiotensin II in streptozotocin-induced diabetic mice.
    Islam MZ; Van Dao C; Miyamoto A; Shiraishi M
    Naunyn Schmiedebergs Arch Pharmacol; 2017 Sep; 390(9):929-938. PubMed ID: 28656320
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Role of vascular adrenergic mechanisms in the haemodynamic and PGI2 stimulating effects of angiotensin in diabetic dogs.
    Koltai MZ; Pósa I; Kocsis E; Rösen P; Pogátsa G
    Mol Cell Biochem; 1996; 163-164():151-7. PubMed ID: 8974051
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Insulin does not regulate vascular smooth muscle Na+, K(+)-ATPase activity in rabbit aorta.
    Simmons DA; Winegrad AI
    Diabetologia; 1993 Mar; 36(3):212-7. PubMed ID: 8385038
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Pharmacological manipulation of vascular endothelium function in non-diabetic and streptozotocin-diabetic rats: effects on nerve conduction, hypoxic resistance and endoneurial capillarization.
    Cameron NE; Cotter MA; Dines KC; Maxfield EK
    Diabetologia; 1993 Jun; 36(6):516-22. PubMed ID: 8335173
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Prevention and reversal of motor and sensory peripheral nerve conduction abnormalities in streptozotocin-diabetic rats by the prostacyclin analogue iloprost.
    Cotter MA; Dines KC; Cameron NE
    Naunyn Schmiedebergs Arch Pharmacol; 1993 May; 347(5):534-40. PubMed ID: 7686634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.