These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25315681)

  • 41. Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson's disease.
    Ferretta A; Gaballo A; Tanzarella P; Piccoli C; Capitanio N; Nico B; Annese T; Di Paola M; Dell'aquila C; De Mari M; Ferranini E; Bonifati V; Pacelli C; Cocco T
    Biochim Biophys Acta; 2014 Jul; 1842(7):902-15. PubMed ID: 24582596
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse.
    Perfeito R; Cunha-Oliveira T; Rego AC
    Free Radic Biol Med; 2013 Sep; 62():186-201. PubMed ID: 23743292
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic mutations in early-onset Parkinson's disease Mexican patients: molecular testing implications.
    Monroy-Jaramillo N; Guerrero-Camacho JL; Rodríguez-Violante M; Boll-Woehrlen MC; Yescas-Gómez P; Alonso-Vilatela ME; López-López M
    Am J Med Genet B Neuropsychiatr Genet; 2014 Apr; 165B(3):235-44. PubMed ID: 24677602
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mitochondrial dysfunction and loss of Parkinson's disease-linked proteins contribute to neurotoxicity of manganese-containing welding fumes.
    Sriram K; Lin GX; Jefferson AM; Roberts JR; Wirth O; Hayashi Y; Krajnak KM; Soukup JM; Ghio AJ; Reynolds SH; Castranova V; Munson AE; Antonini JM
    FASEB J; 2010 Dec; 24(12):4989-5002. PubMed ID: 20798247
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phosphatidylinositol 3 kinase (PI3K) modulates manganese homeostasis and manganese-induced cell signaling in a murine striatal cell line.
    Bryan MR; Uhouse MA; Nordham KD; Joshi P; Rose DIR; O'Brien MT; Aschner M; Bowman AB
    Neurotoxicology; 2018 Jan; 64():185-194. PubMed ID: 28780388
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reduced expression of somatostatin in GABAergic interneurons derived from induced pluripotent stem cells of patients with parkin mutations.
    Iwasawa C; Kuzumaki N; Suda Y; Kagawa R; Oka Y; Hattori N; Okano H; Narita M
    Mol Brain; 2019 Jan; 12(1):5. PubMed ID: 30658665
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pharmacological Inhibition of Necroptosis Protects from Dopaminergic Neuronal Cell Death in Parkinson's Disease Models.
    Iannielli A; Bido S; Folladori L; Segnali A; Cancellieri C; Maresca A; Massimino L; Rubio A; Morabito G; Caporali L; Tagliavini F; Musumeci O; Gregato G; Bezard E; Carelli V; Tiranti V; Broccoli V
    Cell Rep; 2018 Feb; 22(8):2066-2079. PubMed ID: 29466734
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations.
    Li H; Ham A; Ma TC; Kuo SH; Kanter E; Kim D; Ko HS; Quan Y; Sardi SP; Li A; Arancio O; Kang UJ; Sulzer D; Tang G
    Autophagy; 2019 Jan; 15(1):113-130. PubMed ID: 30160596
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Incidence of mutations in the PARK2, PINK1, PARK7 genes in Polish early-onset Parkinson disease patients.
    Koziorowski D; Hoffman-Zacharska D; Sławek J; Jamrozik Z; Janik P; Potulska-Chromik A; Roszmann A; Tataj R; Bal J; Friedman A
    Neurol Neurochir Pol; 2013; 47(4):319-24. PubMed ID: 23986421
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increased cysteine metabolism in PINK1 models of Parkinson's disease.
    Travaglio M; Michopoulos F; Yu Y; Popovic R; Foster E; Coen M; Martins LM
    Dis Model Mech; 2023 Jan; 16(1):. PubMed ID: 36695500
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Occurrence of PARK2 mutations in a never-smoker population with Parkinson's disease in North India.
    Prabhakar S; Vinish M; Das CP; Anand A
    Neuroepidemiology; 2010 Aug; 35(2):152-9. PubMed ID: 20571283
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Epigenetic approach to early-onset Parkinson's disease: low methylation status of SNCA and PARK2 promoter regions.
    Eryilmaz IE; Cecener G; Erer S; Egeli U; Tunca B; Zarifoglu M; Elibol B; Bora Tokcaer A; Saka E; Demirkiran M; Akbostanci C; Dogu O; Colakoglu B; Kenangil G; Kaleagasi H
    Neurol Res; 2017 Nov; 39(11):965-972. PubMed ID: 28830306
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Glial Cultures Differentiated from iPSCs of Patients with
    Gerasimova T; Stepanenko E; Novosadova L; Arsenyeva E; Shimchenko D; Tarantul V; Grivennikov I; Nenasheva V; Novosadova E
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768317
    [TBL] [Abstract][Full Text] [Related]  

  • 54. T-type Calcium Channels Determine the Vulnerability of Dopaminergic Neurons to Mitochondrial Stress in Familial Parkinson Disease.
    Tabata Y; Imaizumi Y; Sugawara M; Andoh-Noda T; Banno S; Chai M; Sone T; Yamazaki K; Ito M; Tsukahara K; Saya H; Hattori N; Kohyama J; Okano H
    Stem Cell Reports; 2018 Nov; 11(5):1171-1184. PubMed ID: 30344006
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Han Chinese family with early-onset Parkinson's disease carries novel compound heterozygous mutations in the PARK2 gene.
    Huang T; Gao CY; Wu L; Gong PY; Wang JZ; Tian YY; Zhang YD
    Brain Behav; 2019 Sep; 9(9):e01372. PubMed ID: 31386307
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lysosomal perturbations in human dopaminergic neurons derived from induced pluripotent stem cells with PARK2 mutation.
    Okarmus J; Bogetofte H; Schmidt SI; Ryding M; García-López S; Ryan BJ; Martínez-Serrano A; Hyttel P; Meyer M
    Sci Rep; 2020 Jun; 10(1):10278. PubMed ID: 32581291
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Molecular mechanism of early-onset familial PD].
    Sato S
    Rinsho Shinkeigaku; 2012; 52(11):1327-8. PubMed ID: 23196607
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cell-specific overexpression of COMT in dopaminergic neurons of Parkinson's disease.
    Kuzumaki N; Suda Y; Iwasawa C; Narita M; Sone T; Watanabe M; Maekawa A; Matsumoto T; Akamatsu W; Igarashi K; Tamura H; Takeshima H; Tawfik VL; Ushijima T; Hattori N; Okano H; Narita M
    Brain; 2019 Jun; 142(6):1675-1689. PubMed ID: 31135049
    [TBL] [Abstract][Full Text] [Related]  

  • 59. LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinson's disease.
    Bonello F; Hassoun SM; Mouton-Liger F; Shin YS; Muscat A; Tesson C; Lesage S; Beart PM; Brice A; Krupp J; Corvol JC; Corti O
    Hum Mol Genet; 2019 May; 28(10):1645-1660. PubMed ID: 30629163
    [TBL] [Abstract][Full Text] [Related]  

  • 60. LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: reversal by gene correction.
    Sanders LH; Laganière J; Cooper O; Mak SK; Vu BJ; Huang YA; Paschon DE; Vangipuram M; Sundararajan R; Urnov FD; Langston JW; Gregory PD; Zhang HS; Greenamyre JT; Isacson O; Schüle B
    Neurobiol Dis; 2014 Feb; 62():381-6. PubMed ID: 24148854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.