BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 25315787)

  • 1. Dynamic resting state functional connectivity in awake and anesthetized rodents.
    Liang Z; Liu X; Zhang N
    Neuroimage; 2015 Jan; 104():89-99. PubMed ID: 25315787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal transitions of spontaneous brain activity.
    Ma Z; Zhang N
    Elife; 2018 Mar; 7():. PubMed ID: 29517975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anticorrelated resting-state functional connectivity in awake rat brain.
    Liang Z; King J; Zhang N
    Neuroimage; 2012 Jan; 59(2):1190-9. PubMed ID: 21864689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation.
    Wei D; Yang J; Li W; Wang K; Zhang Q; Qiu J
    Cortex; 2014 Feb; 51():92-102. PubMed ID: 24188648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Resting-State Functional Connectivity in Major Depression.
    Kaiser RH; Whitfield-Gabrieli S; Dillon DG; Goer F; Beltzer M; Minkel J; Smoski M; Dichter G; Pizzagalli DA
    Neuropsychopharmacology; 2016 Jun; 41(7):1822-30. PubMed ID: 26632990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental sex differences in resting state functional connectivity of amygdala sub-regions.
    Alarcón G; Cservenka A; Rudolph MD; Fair DA; Nagel BJ
    Neuroimage; 2015 Jul; 115():235-44. PubMed ID: 25887261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution functional MRI identified distinct global intrinsic functional networks of nociceptive posterior insula and S2 regions in squirrel monkey brain.
    Wu R; Wang F; Yang PF; Chen LM
    Neuroimage; 2017 Jul; 155():147-158. PubMed ID: 28461059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the functional network of medial prefrontal cortex by combining optogenetics and fMRI in awake rats.
    Liang Z; Watson GD; Alloway KD; Lee G; Neuberger T; Zhang N
    Neuroimage; 2015 Aug; 117():114-23. PubMed ID: 26002727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interhemispheric resting-state functional connectivity of the claustrum in the awake and anesthetized states.
    Smith JB; Liang Z; Watson GDR; Alloway KD; Zhang N
    Brain Struct Funct; 2017 Jul; 222(5):2041-2058. PubMed ID: 27714529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.
    Gopinath K; Krishnamurthy V; Cabanban R; Crosson BA
    Brain Connect; 2015 Jun; 5(5):267-75. PubMed ID: 25744222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches.
    Kang J; Wang L; Yan C; Wang J; Liang X; He Y
    Neuroimage; 2011 Jun; 56(3):1222-34. PubMed ID: 21420500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph theory analysis identified two hubs that connect sensorimotor and cognitive and cortical and subcortical nociceptive networks in the non-human primate.
    Wu R; Wang F; Yang PF; Gore JC; Chen LM
    Neuroimage; 2022 Aug; 257():119244. PubMed ID: 35533827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resting-state functional connectivity in prefrontal cortex investigated by functional near-infrared spectroscopy: A longitudinal and cross-sectional study.
    Wu S; Gao L; Chen C; Li J; He S
    Neurosci Lett; 2018 Sep; 683():94-99. PubMed ID: 29935269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered resting-state brain activity in obstructive sleep apnea.
    Zhang Q; Wang D; Qin W; Li Q; Chen B; Zhang Y; Yu C
    Sleep; 2013 May; 36(5):651-659B. PubMed ID: 23633747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulus-Elicited Connectivity Influences Resting-State Connectivity Years Later in Human Development: A Prospective Study.
    Gabard-Durnam LJ; Gee DG; Goff B; Flannery J; Telzer E; Humphreys KL; Lumian DS; Fareri DS; Caldera C; Tottenham N
    J Neurosci; 2016 Apr; 36(17):4771-84. PubMed ID: 27122035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realistic models of apparent dynamic changes in resting-state connectivity in somatosensory cortex.
    Shi Z; Rogers BP; Chen LM; Morgan VL; Mishra A; Wilkes DM; Gore JC
    Hum Brain Mapp; 2016 Nov; 37(11):3897-3910. PubMed ID: 27296233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping thalamocortical networks in rat brain using resting-state functional connectivity.
    Liang Z; Li T; King J; Zhang N
    Neuroimage; 2013 Dec; 83():237-44. PubMed ID: 23777756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disrupted pathways from limbic areas to thalamus in schizophrenia highlighted by whole-brain resting-state effective connectivity analysis.
    Hua M; Peng Y; Zhou Y; Qin W; Yu C; Liang M
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Apr; 99():109837. PubMed ID: 31830509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association between resting-state functional connectivity and empathizing/systemizing.
    Takeuchi H; Taki Y; Nouchi R; Sekiguchi A; Hashizume H; Sassa Y; Kotozaki Y; Miyauchi CM; Yokoyama R; Iizuka K; Nakagawa S; Nagase T; Kunitoki K; Kawashima R
    Neuroimage; 2014 Oct; 99():312-22. PubMed ID: 24844739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute effects of vortioxetine and duloxetine on resting-state functional connectivity in the awake rat.
    Pérez PD; Ma Z; Hamilton C; Sánchez C; Mørk A; Pehrson AL; Bundgaard C; Zhang N
    Neuropharmacology; 2018 Jan; 128():379-387. PubMed ID: 29104073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.