These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 25316036)
1. Comparative proteomic analysis revealing the complex network associated with waterlogging stress in maize (Zea mays L.) seedling root cells. Yu F; Han X; Geng C; Zhao Y; Zhang Z; Qiu F Proteomics; 2015 Jan; 15(1):135-47. PubMed ID: 25316036 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings. Zhai L; Liu Z; Zou X; Jiang Y; Qiu F; Zheng Y; Zhang Z Physiol Plant; 2013 Feb; 147(2):181-93. PubMed ID: 22607471 [TBL] [Abstract][Full Text] [Related]
3. Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance. Chen F; Fang P; Peng Y; Zeng W; Zhao X; Ding Y; Zhuang Z; Gao Q; Ren B Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554168 [TBL] [Abstract][Full Text] [Related]
4. Comparative Proteomic and Physiological Analyses of Two Divergent Maize Inbred Lines Provide More Insights into Drought-Stress Tolerance Mechanisms. Zenda T; Liu S; Wang X; Jin H; Liu G; Duan H Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30340410 [TBL] [Abstract][Full Text] [Related]
5. Comparative Proteomics Analysis of the Seedling Root Response of Drought-sensitive and Drought-tolerant Maize Varieties to Drought Stress. Zeng W; Peng Y; Zhao X; Wu B; Chen F; Ren B; Zhuang Z; Gao Q; Ding Y Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31181633 [TBL] [Abstract][Full Text] [Related]
6. Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Qiu F; Zheng Y; Zhang Z; Xu S Ann Bot; 2007 Jun; 99(6):1067-81. PubMed ID: 17470902 [TBL] [Abstract][Full Text] [Related]
7. iTRAQ-Based Proteomic Analysis Reveals Several Strategies to Cope with Drought Stress in Maize Seedlings. Jiang Z; Jin F; Shan X; Li Y Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779286 [TBL] [Abstract][Full Text] [Related]
8. Elucidating the morpho-physiological adaptations and molecular responses under long-term waterlogging stress in maize through gene expression analysis. Kaur G; Vikal Y; Kaur L; Kalia A; Mittal A; Kaur D; Yadav I Plant Sci; 2021 Mar; 304():110823. PubMed ID: 33568312 [TBL] [Abstract][Full Text] [Related]
9. Raffinose catabolism enhances maize waterlogging tolerance by stimulating adventitious root growth and development. Yan D; Gao Y; Zhang Y; Li D; Dirk LMA; Downie AB; Zhao T J Exp Bot; 2024 Sep; 75(18):5955-5970. PubMed ID: 38938017 [TBL] [Abstract][Full Text] [Related]
10. Role of antioxidant and anaerobic metabolism enzymes in providing tolerance to maize (Zea mays L.) seedlings against waterlogging. Chugh V; Kaur N; Gupta AK Indian J Biochem Biophys; 2011 Oct; 48(5):346-52. PubMed ID: 22165294 [TBL] [Abstract][Full Text] [Related]
11. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Abiko T; Kotula L; Shiono K; Malik AI; Colmer TD; Nakazono M Plant Cell Environ; 2012 Sep; 35(9):1618-30. PubMed ID: 22471697 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of Vitreoscilla hemoglobin increases waterlogging tolerance in Arabidopsis and maize. Du H; Shen X; Huang Y; Huang M; Zhang Z BMC Plant Biol; 2016 Feb; 16():35. PubMed ID: 26833353 [TBL] [Abstract][Full Text] [Related]
13. Comparative Proteomics of Contrasting Maize Genotypes Provides Insights into Salt-Stress Tolerance Mechanisms. Luo M; Zhao Y; Wang Y; Shi Z; Zhang P; Zhang Y; Song W; Zhao J J Proteome Res; 2018 Jan; 17(1):141-153. PubMed ID: 29192500 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis reveals response of differential wheat (Triticum aestivum L.) genotypes to oxygen deficiency stress. Pan R; He D; Xu L; Zhou M; Li C; Wu C; Xu Y; Zhang W BMC Genomics; 2019 Jan; 20(1):60. PubMed ID: 30658567 [TBL] [Abstract][Full Text] [Related]
15. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1. Liu Y; Lamkemeyer T; Jakob A; Mi G; Zhang F; Nordheim A; Hochholdinger F Proteomics; 2006 Aug; 6(15):4300-8. PubMed ID: 16819721 [TBL] [Abstract][Full Text] [Related]
16. Proteomic analysis of cucumber seedling roots subjected to salt stress. Du CX; Fan HF; Guo SR; Tezuka T; Li J Phytochemistry; 2010 Sep; 71(13):1450-9. PubMed ID: 20580043 [TBL] [Abstract][Full Text] [Related]
17. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Zhu Z; Chen J; Zheng HL Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256 [TBL] [Abstract][Full Text] [Related]
18. Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress. Qing DJ; Lu HF; Li N; Dong HT; Dong DF; Li YZ Plant Cell Physiol; 2009 Apr; 50(4):889-903. PubMed ID: 19264788 [TBL] [Abstract][Full Text] [Related]
19. System analysis of microRNAs in the development and aluminium stress responses of the maize root system. Kong X; Zhang M; Xu X; Li X; Li C; Ding Z Plant Biotechnol J; 2014 Oct; 12(8):1108-21. PubMed ID: 24985700 [TBL] [Abstract][Full Text] [Related]
20. Comparative proteomic analysis reveals that exogenous 6-benzyladenine (6-BA) improves the defense system activity of waterlogged summer maize. Hu J; Ren B; Dong S; Liu P; Zhao B; Zhang J BMC Plant Biol; 2020 Jan; 20(1):44. PubMed ID: 31996151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]