These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 25316152)

  • 21. Marginal Structural Models: unbiased estimation for longitudinal studies.
    Moodie EE; Stephens DA
    Int J Public Health; 2011 Feb; 56(1):117-9. PubMed ID: 20931349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A cautionary note concerning the use of stabilized weights in marginal structural models.
    Talbot D; Atherton J; Rossi AM; Bacon SL; Lefebvre G
    Stat Med; 2015 Feb; 34(5):812-23. PubMed ID: 25410264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On Bayesian estimation of marginal structural models.
    Saarela O; Stephens DA; Moodie EE; Klein MB
    Biometrics; 2015 Jun; 71(2):279-88. PubMed ID: 25677103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Propensity score analysis with partially observed covariates: How should multiple imputation be used?
    Leyrat C; Seaman SR; White IR; Douglas I; Smeeth L; Kim J; Resche-Rigon M; Carpenter JR; Williamson EJ
    Stat Methods Med Res; 2019 Jan; 28(1):3-19. PubMed ID: 28573919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-dimensional propensity score algorithm in comparative effectiveness research with time-varying interventions.
    Neugebauer R; Schmittdiel JA; Zhu Z; Rassen JA; Seeger JD; Schneeweiss S
    Stat Med; 2015 Feb; 34(5):753-81. PubMed ID: 25488047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving propensity score estimators' robustness to model misspecification using super learner.
    Pirracchio R; Petersen ML; van der Laan M
    Am J Epidemiol; 2015 Jan; 181(2):108-19. PubMed ID: 25515168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies.
    Schuler MS; Rose S
    Am J Epidemiol; 2017 Jan; 185(1):65-73. PubMed ID: 27941068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Causal inference in survival analysis using longitudinal observational data: Sequential trials and marginal structural models.
    Keogh RH; Gran JM; Seaman SR; Davies G; Vansteelandt S
    Stat Med; 2023 Jun; 42(13):2191-2225. PubMed ID: 37086186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Case Study of the Impact of Data-Adaptive Versus Model-Based Estimation of the Propensity Scores on Causal Inferences from Three Inverse Probability Weighting Estimators.
    Neugebauer R; Schmittdiel JA; van der Laan MJ
    Int J Biostat; 2016 May; 12(1):131-55. PubMed ID: 27227720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accuracy of conventional and marginal structural Cox model estimators: a simulation study.
    Xiao Y; Abrahamowicz M; Moodie EE
    Int J Biostat; 2010; 6(2):Article 13. PubMed ID: 21969997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constructing inverse probability weights for continuous exposures: a comparison of methods.
    Naimi AI; Moodie EE; Auger N; Kaufman JS
    Epidemiology; 2014 Mar; 25(2):292-9. PubMed ID: 24487212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine learning outcome regression improves doubly robust estimation of average causal effects.
    Choi BY; Wang CP; Gelfond J
    Pharmacoepidemiol Drug Saf; 2020 Sep; 29(9):1120-1133. PubMed ID: 32716126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Marginal structural Cox models for estimating the association between β-interferon exposure and disease progression in a multiple sclerosis cohort.
    Karim ME; Gustafson P; Petkau J; Zhao Y; Shirani A; Kingwell E; Evans C; van der Kop M; Oger J; Tremlett H
    Am J Epidemiol; 2014 Jul; 180(2):160-71. PubMed ID: 24939980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural accelerated failure time models for survival analysis in studies with time-varying treatments.
    Hernán MA; Cole SR; Margolick J; Cohen M; Robins JM
    Pharmacoepidemiol Drug Saf; 2005 Jul; 14(7):477-91. PubMed ID: 15660442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reflection on modern methods: combining weights for confounding and missing data.
    Ross RK; Breskin A; Breger TL; Westreich D
    Int J Epidemiol; 2022 May; 51(2):679-684. PubMed ID: 34536004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimating causal treatment effects from longitudinal HIV natural history studies using marginal structural models.
    Ko H; Hogan JW; Mayer KH
    Biometrics; 2003 Mar; 59(1):152-62. PubMed ID: 12762452
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An information criterion for marginal structural models.
    Platt RW; Brookhart MA; Cole SR; Westreich D; Schisterman EF
    Stat Med; 2013 Apr; 32(8):1383-93. PubMed ID: 22972662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Marginal structural models for estimating the effect of highly active antiretroviral therapy initiation on CD4 cell count.
    Cole SR; Hernán MA; Margolick JB; Cohen MH; Robins JM
    Am J Epidemiol; 2005 Sep; 162(5):471-8. PubMed ID: 16076835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Double robust and efficient estimation of a prognostic model for events in the presence of dependent censoring.
    Schnitzer ME; Lok JJ; Bosch RJ
    Biostatistics; 2016 Jan; 17(1):165-77. PubMed ID: 26224070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Marginal structural models and causal inference in epidemiology.
    Robins JM; Hernán MA; Brumback B
    Epidemiology; 2000 Sep; 11(5):550-60. PubMed ID: 10955408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.