These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 25316320)
1. Proteomics of Huntington's disease-affected human embryonic stem cells reveals an evolving pathology involving mitochondrial dysfunction and metabolic disturbances. McQuade LR; Balachandran A; Scott HA; Khaira S; Baker MS; Schmidt U J Proteome Res; 2014 Dec; 13(12):5648-59. PubMed ID: 25316320 [TBL] [Abstract][Full Text] [Related]
2. Derivation of Huntington's disease-affected human embryonic stem cell lines. Bradley CK; Scott HA; Chami O; Peura TT; Dumevska B; Schmidt U; Stojanov T Stem Cells Dev; 2011 Mar; 20(3):495-502. PubMed ID: 20649476 [TBL] [Abstract][Full Text] [Related]
3. Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient. Chae JI; Kim DW; Lee N; Jeon YJ; Jeon I; Kwon J; Kim J; Soh Y; Lee DS; Seo KS; Choi NJ; Park BC; Kang SH; Ryu J; Oh SH; Shin DA; Lee DR; Do JT; Park IH; Daley GQ; Song J Biochem J; 2012 Sep; 446(3):359-71. PubMed ID: 22694310 [TBL] [Abstract][Full Text] [Related]
4. A novel human embryonic stem cell-derived Huntington's disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT-dependent neurodegeneration. Lu B; Palacino J FASEB J; 2013 May; 27(5):1820-9. PubMed ID: 23325320 [TBL] [Abstract][Full Text] [Related]
5. Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum. Oliveira JM J Neurochem; 2010 Jul; 114(1):1-12. PubMed ID: 20403078 [TBL] [Abstract][Full Text] [Related]
6. Expanded CAG repeats in the murine Huntington's disease gene increases neuronal differentiation of embryonic and neural stem cells. Lorincz MT; Zawistowski VA Mol Cell Neurosci; 2009 Jan; 40(1):1-13. PubMed ID: 18625318 [TBL] [Abstract][Full Text] [Related]
7. Early transcriptional changes linked to naturally occurring Huntington's disease mutations in neural derivatives of human embryonic stem cells. Feyeux M; Bourgois-Rocha F; Redfern A; Giles P; Lefort N; Aubert S; Bonnefond C; Bugi A; Ruiz M; Deglon N; Jones L; Peschanski M; Allen ND; Perrier AL Hum Mol Genet; 2012 Sep; 21(17):3883-95. PubMed ID: 22678061 [TBL] [Abstract][Full Text] [Related]
8. Challenges of Huntington's disease and quest for therapeutic biomarkers. Kotrcova E; Jarkovska K; Valekova I; Zizkova M; Motlik J; Gadher SJ; Kovarova H Proteomics Clin Appl; 2015 Feb; 9(1-2):147-58. PubMed ID: 25290828 [TBL] [Abstract][Full Text] [Related]
9. Juvenile Huntington's Disease Skin Fibroblasts Respond with Elevated Parkin Level and Increased Proteasome Activity as a Potential Mechanism to Counterbalance the Pathological Consequences of Mutant Huntingtin Protein. Aladdin A; Király R; Boto P; Regdon Z; Tar K Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31717806 [TBL] [Abstract][Full Text] [Related]
10. Neural stem cells derived from the developing forebrain of YAC128 mice exhibit pathological features of Huntington's disease. Li E; Park HR; Hong CP; Kim Y; Choi J; Lee S; Park HJ; Lee B; Kim TA; Kim SJ; Kim HS; Song J Cell Prolif; 2020 Oct; 53(10):e12893. PubMed ID: 32865873 [TBL] [Abstract][Full Text] [Related]
12. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Seong IS; Ivanova E; Lee JM; Choo YS; Fossale E; Anderson M; Gusella JF; Laramie JM; Myers RH; Lesort M; MacDonald ME Hum Mol Genet; 2005 Oct; 14(19):2871-80. PubMed ID: 16115812 [TBL] [Abstract][Full Text] [Related]
13. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease. Reddy PH; Shirendeb UP Biochim Biophys Acta; 2012 Feb; 1822(2):101-10. PubMed ID: 22080977 [TBL] [Abstract][Full Text] [Related]
14. VCP cooperates with UBXD1 to degrade mitochondrial outer membrane protein MCL1 in model of Huntington's disease. Guo X; Qi X Biochim Biophys Acta Mol Basis Dis; 2017 Feb; 1863(2):552-559. PubMed ID: 27913212 [TBL] [Abstract][Full Text] [Related]
15. [Huntington's disease: cellular and molecular basis of pathology]. Korzhova VV; Artamonov DN; Vlasova OL; Bezprozvannyĭ IB Zh Vyssh Nerv Deiat Im I P Pavlova; 2014; 64(4):359-75. PubMed ID: 25723022 [TBL] [Abstract][Full Text] [Related]
16. Progerin-Induced Transcriptional Changes in Huntington's Disease Human Pluripotent Stem Cell-Derived Neurons. Cohen-Carmon D; Sorek M; Lerner V; Divya MS; Nissim-Rafinia M; Yarom Y; Meshorer E Mol Neurobiol; 2020 Mar; 57(3):1768-1777. PubMed ID: 31834602 [TBL] [Abstract][Full Text] [Related]
18. Regulation of mitochondrial morphology and cell cycle by microRNA-214 targeting Mitofusin2. Bucha S; Mukhopadhyay D; Bhattacharyya NP Biochem Biophys Res Commun; 2015 Oct; 465(4):797-802. PubMed ID: 26307536 [TBL] [Abstract][Full Text] [Related]
19. Modulation of mitochondrial function by stem cell-derived cellular components. Liu T; Im W; Lee ST; Ban JJ; Chai YJ; Lee M; Mook-Jung I; Chu K; Kim M Biochem Biophys Res Commun; 2014 Jun; 448(4):403-8. PubMed ID: 24802395 [TBL] [Abstract][Full Text] [Related]
20. Induced pluripotent stem cell lines from Huntington's disease mice undergo neuronal differentiation while showing alterations in the lysosomal pathway. Castiglioni V; Onorati M; Rochon C; Cattaneo E Neurobiol Dis; 2012 Apr; 46(1):30-40. PubMed ID: 22227000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]