BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 25316320)

  • 21. Novel proteomic changes in brain mitochondria provide insights into mitochondrial dysfunction in mouse models of Huntington's disease.
    Agrawal S; Fox JH
    Mitochondrion; 2019 Jul; 47():318-329. PubMed ID: 30902619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleocytoplasmic trafficking and transcription effects of huntingtin in Huntington's disease.
    Truant R; Atwal RS; Burtnik A
    Prog Neurobiol; 2007 Nov; 83(4):211-27. PubMed ID: 17240517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FOXOs modulate proteasome activity in human-induced pluripotent stem cells of Huntington's disease and their derived neural cells.
    Liu Y; Qiao F; Leiferman PC; Ross A; Schlenker EH; Wang H
    Hum Mol Genet; 2017 Nov; 26(22):4416-4428. PubMed ID: 28973411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromosomal instability during neurogenesis in Huntington's disease.
    Ruzo A; Croft GF; Metzger JJ; Galgoczi S; Gerber LJ; Pellegrini C; Wang H; Fenner M; Tse S; Marks A; Nchako C; Brivanlou AH
    Development; 2018 Jan; 145(2):. PubMed ID: 29378824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lack of huntingtin promotes neural stem cells differentiation into glial cells while neurons expressing huntingtin with expanded polyglutamine tracts undergo cell death.
    Conforti P; Camnasio S; Mutti C; Valenza M; Thompson M; Fossale E; Zeitlin S; MacDonald ME; Zuccato C; Cattaneo E
    Neurobiol Dis; 2013 Feb; 50():160-70. PubMed ID: 23089356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human-to-mouse prion-like propagation of mutant huntingtin protein.
    Jeon I; Cicchetti F; Cisbani G; Lee S; Li E; Bae J; Lee N; Li L; Im W; Kim M; Kim HS; Oh SH; Kim TA; Ko JJ; Aubé B; Oueslati A; Kim YJ; Song J
    Acta Neuropathol; 2016 Oct; 132(4):577-92. PubMed ID: 27221146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human embryonic stem cell models of Huntington disease.
    Niclis J; Trounson AO; Dottori M; Ellisdon A; Bottomley SP; Verlinsky Y; Cram D
    Reprod Biomed Online; 2009 Jul; 19(1):106-13. PubMed ID: 19573298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Manifestation of Huntington's disease pathology in human induced pluripotent stem cell-derived neurons.
    Nekrasov ED; Vigont VA; Klyushnikov SA; Lebedeva OS; Vassina EM; Bogomazova AN; Chestkov IV; Semashko TA; Kiseleva E; Suldina LA; Bobrovsky PA; Zimina OA; Ryazantseva MA; Skopin AY; Illarioshkin SN; Kaznacheyeva EV; Lagarkova MA; Kiselev SL
    Mol Neurodegener; 2016 Apr; 11():27. PubMed ID: 27080129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellular and subcellular localization of Huntingtin [corrected] aggregates in the brain of a rat transgenic for Huntington disease.
    Petrasch-Parwez E; Nguyen HP; Löbbecke-Schumacher M; Habbes HW; Wieczorek S; Riess O; Andres KH; Dermietzel R; Von Hörsten S
    J Comp Neurol; 2007 Apr; 501(5):716-30. PubMed ID: 17299753
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of cholesterol metabolism in Huntington's disease.
    Leoni V; Caccia C
    Biochem Biophys Res Commun; 2014 Apr; 446(3):697-701. PubMed ID: 24525128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Huntington disease and the huntingtin protein.
    Zheng Z; Diamond MI
    Prog Mol Biol Transl Sci; 2012; 107():189-214. PubMed ID: 22482451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington's disease patients demonstrates mutation related enhanced lysosomal activity.
    Camnasio S; Delli Carri A; Lombardo A; Grad I; Mariotti C; Castucci A; Rozell B; Lo Riso P; Castiglioni V; Zuccato C; Rochon C; Takashima Y; Diaferia G; Biunno I; Gellera C; Jaconi M; Smith A; Hovatta O; Naldini L; Di Donato S; Feki A; Cattaneo E
    Neurobiol Dis; 2012 Apr; 46(1):41-51. PubMed ID: 22405424
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutant huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington's disease.
    Valencia A; Reeves PB; Sapp E; Li X; Alexander J; Kegel KB; Chase K; Aronin N; DiFiglia M
    J Neurosci Res; 2010 Jan; 88(1):179-90. PubMed ID: 19642201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomic Analysis of Huntington's Disease.
    Kumar S; Singh P; Sharma S; Ali J; Baboota S; Pottoo FH
    Curr Protein Pept Sci; 2020; 21(12):1218-1222. PubMed ID: 33023443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Huntington disease iPSCs show early molecular changes in intracellular signaling, the expression of oxidative stress proteins and the p53 pathway.
    Szlachcic WJ; Switonski PM; Krzyzosiak WJ; Figlerowicz M; Figiel M
    Dis Model Mech; 2015 Sep; 8(9):1047-57. PubMed ID: 26092128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ubiquitin-proteasome system alterations in a striatal cell model of Huntington's disease.
    Hunter JM; Lesort M; Johnson GV
    J Neurosci Res; 2007 Jun; 85(8):1774-88. PubMed ID: 17455294
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased glucose metabolism and ATP level in brain tissue of Huntington's disease transgenic mice.
    Oláh J; Klivényi P; Gardián G; Vécsei L; Orosz F; Kovacs GG; Westerhoff HV; Ovádi J
    FEBS J; 2008 Oct; 275(19):4740-55. PubMed ID: 18721135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective neuronal degeneration in Huntington's disease.
    Cowan CM; Raymond LA
    Curr Top Dev Biol; 2006; 75():25-71. PubMed ID: 16984809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reversal of cellular phenotypes in neural cells derived from Huntington's disease monkey-induced pluripotent stem cells.
    Carter RL; Chen Y; Kunkanjanawan T; Xu Y; Moran SP; Putkhao K; Yang J; Huang AH; Parnpai R; Chan AW
    Stem Cell Reports; 2014 Oct; 3(4):585-93. PubMed ID: 25358787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length.
    Becher MW; Kotzuk JA; Sharp AH; Davies SW; Bates GP; Price DL; Ross CA
    Neurobiol Dis; 1998 Apr; 4(6):387-97. PubMed ID: 9666478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.