These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25316326)

  • 1. A simple microfluidic dispenser for single-microparticle and cell samples.
    Kasukurti A; Eggleton CD; Desai SA; Disharoon DI; Marr DW
    Lab Chip; 2014 Dec; 14(24):4673-9. PubMed ID: 25316326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring cell mechanics by optical alignment compression cytometry.
    Roth KB; Eggleton CD; Neeves KB; Marr DW
    Lab Chip; 2013 Apr; 13(8):1571-7. PubMed ID: 23440063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell isolation using a DVD optical pickup.
    Kasukurti A; Potcoava M; Desai SA; Eggleton C; Marr DW
    Opt Express; 2011 May; 19(11):10377-86. PubMed ID: 21643294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells.
    Bellini N; Vishnubhatla KC; Bragheri F; Ferrara L; Minzioni P; Ramponi R; Cristiani I; Osellame R
    Opt Express; 2010 Mar; 18(5):4679-88. PubMed ID: 20389480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches.
    Dalili A; Samiei E; Hoorfar M
    Analyst; 2018 Dec; 144(1):87-113. PubMed ID: 30402633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically-actuated translational and rotational motion at the microscale for microfluidic manipulation and characterization.
    Mohanty S
    Lab Chip; 2012 Oct; 12(19):3624-36. PubMed ID: 22899251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An optofluidic "tweeze-and-drag" cell stretcher in a microfluidic channel.
    Yao Z; Kwan CC; Poon AW
    Lab Chip; 2020 Feb; 20(3):601-613. PubMed ID: 31909404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical tweezers for single cells.
    Zhang H; Liu KK
    J R Soc Interface; 2008 Jul; 5(24):671-90. PubMed ID: 18381254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A smart pipette for equipment-free separation and delivery of plasma for on-site whole blood analysis.
    Im SB; Kim SC; Shim JS
    Anal Bioanal Chem; 2016 Feb; 408(5):1391-7. PubMed ID: 26718913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic sorting of arbitrary cells with dynamic optical tweezers.
    Landenberger B; Höfemann H; Wadle S; Rohrbach A
    Lab Chip; 2012 Sep; 12(17):3177-83. PubMed ID: 22767208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Plasmodium falciparum-infected red blood cells by optical stretching.
    Mauritz JM; Tiffert T; Seear R; Lautenschläger F; Esposito A; Lew VL; Guck J; Kaminski CF
    J Biomed Opt; 2010; 15(3):030517. PubMed ID: 20615000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Trap Loading of Dielectric Microparticles In Air.
    Park H; LeBrun TW
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28190055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping.
    Didar TF; Li K; Tabrizian M; Veres T
    Lab Chip; 2013 Jul; 13(13):2615-22. PubMed ID: 23640083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of model mixtures of epsilon-globin positive fetal nucleated red blood cells and anucleate erythrocytes using a microfluidic device.
    Lee D; Sukumar P; Mahyuddin A; Choolani M; Xu G
    J Chromatogr A; 2010 Mar; 1217(11):1862-6. PubMed ID: 20144459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purple sea urchin Strongylocentrotus purpuratus gamete manipulation using optical trapping and microfluidics.
    Chandsawangbhuwana C; Shi LZ; Zhu Q; Berns MW
    J Biomed Opt; 2013 Apr; 18(4):040501. PubMed ID: 23525373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A passive microfluidic device for continuous microparticle enrichment.
    Fan LL; Zhu XL; Yan Q; Zhe J; Zhao L
    Electrophoresis; 2019 Mar; 40(6):1000-1009. PubMed ID: 30488639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces.
    Petersson F; Nilsson A; Holm C; Jonsson H; Laurell T
    Lab Chip; 2005 Jan; 5(1):20-2. PubMed ID: 15616735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic-based high-throughput optical trapping of nanoparticles.
    Kotnala A; Zheng Y; Fu J; Cheng W
    Lab Chip; 2017 Jun; 17(12):2125-2134. PubMed ID: 28561826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic cell counter/sorter utilizing multiple particle tracing technique and optically switching approach.
    Lin CC; Chen A; Lin CH
    Biomed Microdevices; 2008 Feb; 10(1):55-63. PubMed ID: 17659444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women.
    Huang R; Barber TA; Schmidt MA; Tompkins RG; Toner M; Bianchi DW; Kapur R; Flejter WL
    Prenat Diagn; 2008 Oct; 28(10):892-9. PubMed ID: 18821715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.