These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25316515)

  • 1. A local proton source in a [Mn(bpy-R)(CO)3Br]-type redox catalyst enables CO2 reduction even in the absence of Brønsted acids.
    Franco F; Cometto C; Ferrero Vallana F; Sordello F; Priola E; Minero C; Nervi C; Gobetto R
    Chem Commun (Camb); 2014 Dec; 50(93):14670-3. PubMed ID: 25316515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids.
    Smieja JM; Sampson MD; Grice KA; Benson EE; Froehlich JD; Kubiak CP
    Inorg Chem; 2013 Mar; 52(5):2484-91. PubMed ID: 23418912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the efficiency of electrochemical CO2 reduction using immobilized manganese complexes.
    Walsh JJ; Smith CL; Neri G; Whitehead GF; Robertson CM; Cowan AJ
    Faraday Discuss; 2015; 183():147-60. PubMed ID: 26375151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local Proton Source in Electrocatalytic CO
    Franco F; Cometto C; Nencini L; Barolo C; Sordello F; Minero C; Fiedler J; Robert M; Gobetto R; Nervi C
    Chemistry; 2017 Apr; 23(20):4782-4793. PubMed ID: 28106930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manganese Carbonyl Complexes as Selective Electrocatalysts for CO
    Siritanaratkul B; Eagle C; Cowan AJ
    Acc Chem Res; 2022 Apr; 55(7):955-965. PubMed ID: 35285618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic Effects of Substituents on
    Rotundo L; Azzi E; Deagostino A; Garino C; Nencini L; Priola E; Quagliotto P; Rocca R; Gobetto R; Nervi C
    Front Chem; 2019; 7():417. PubMed ID: 31231639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational study on the reactivity of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts [Mn[bpyMe(Im-R)](CO)
    Li X; Panetier JA
    Phys Chem Chem Phys; 2021 Jul; 23(27):14940-14951. PubMed ID: 34223846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic CO2 Reduction to Formate Using a Mn(I) Molecular Catalyst in a Robust Metal-Organic Framework.
    Fei H; Sampson MD; Lee Y; Kubiak CP; Cohen SM
    Inorg Chem; 2015 Jul; 54(14):6821-8. PubMed ID: 26135673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoting Selective Generation of Formic Acid from CO
    Madsen MR; Rønne MH; Heuschen M; Golo D; Ahlquist MSG; Skrydstrup T; Pedersen SU; Daasbjerg K
    J Am Chem Soc; 2021 Dec; 143(48):20491-20500. PubMed ID: 34813304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An amide-based second coordination sphere promotes the dimer pathway of Mn-catalyzed CO
    Yang Y; Ertem MZ; Duan L
    Chem Sci; 2021 Feb; 12(13):4779-4788. PubMed ID: 34168756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Impact of a Proton Relay in Binuclear α-Diimine-Mn(CO)
    Fokin I; Denisiuk A; Würtele C; Siewert I
    Inorg Chem; 2019 Aug; 58(16):10444-10453. PubMed ID: 31268703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoinduced Generation of a Durable Thermal Proton Reduction Catalyst with in Situ Conversion of Mn(bpy)(CO)
    Shirley H; Parkin S; Delcamp JH
    Inorg Chem; 2020 Aug; 59(16):11266-11272. PubMed ID: 32615039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction-induced CO dissociation by a [Mn(bpy)(CO)
    Kuo HY; Tignor SE; Lee TS; Ni D; Park JE; Scholes GD; Bocarsly AB
    Dalton Trans; 2020 Jan; 49(3):891-900. PubMed ID: 31859334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dinuclear Rhenium Complex with a Proton Responsive Ligand as a Redox Catalyst for the Electrochemical CO
    Wilting A; Stolper T; Mata RA; Siewert I
    Inorg Chem; 2017 Apr; 56(7):4176-4185. PubMed ID: 28318245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manganese catalysts with bulky bipyridine ligands for the electrocatalytic reduction of carbon dioxide: eliminating dimerization and altering catalysis.
    Sampson MD; Nguyen AD; Grice KA; Moore CE; Rheingold AL; Kubiak CP
    J Am Chem Soc; 2014 Apr; 136(14):5460-71. PubMed ID: 24641545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turning on the Protonation-First Pathway for Electrocatalytic CO
    Ngo KT; McKinnon M; Mahanti B; Narayanan R; Grills DC; Ertem MZ; Rochford J
    J Am Chem Soc; 2017 Feb; 139(7):2604-2618. PubMed ID: 28118005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalytic Reduction of CO2 to CO With Re-Pyridyl-NHCs: Proton Source Influence on Rates and Product Selectivities.
    Liyanage NP; Dulaney HA; Huckaba AJ; Jurss JW; Delcamp JH
    Inorg Chem; 2016 Jun; 55(12):6085-94. PubMed ID: 27281546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical CO
    Siewert I
    Acc Chem Res; 2022 Feb; 55(4):473-483. PubMed ID: 35077152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic Reduction of CO2 with Re-Pyridyl-NHCs.
    Huckaba AJ; Sharpe EA; Delcamp JH
    Inorg Chem; 2016 Jan; 55(2):682-90. PubMed ID: 26703758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of the formation of a Mn-based CO2 reduction catalyst revealed by pulse radiolysis with time-resolved infrared detection.
    Grills DC; Farrington JA; Layne BH; Lymar SV; Mello BA; Preses JM; Wishart JF
    J Am Chem Soc; 2014 Apr; 136(15):5563-6. PubMed ID: 24679111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.