BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

750 related articles for article (PubMed ID: 25316579)

  • 1. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications.
    Vo-Dinh T; Liu Y; Fales AM; Ngo H; Wang HN; Register JK; Yuan H; Norton SJ; Griffin GD
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(1):17-33. PubMed ID: 25316579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics.
    Liu Y; Chang Z; Yuan H; Fales AM; Vo-Dinh T
    Nanoscale; 2013 Dec; 5(24):12126-31. PubMed ID: 24162005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic nanoprobes: from chemical sensing to medical diagnostics and therapy.
    Vo-Dinh T; Fales AM; Griffin GD; Khoury CG; Liu Y; Ngo H; Norton SJ; Register JK; Wang HN; Yuan H
    Nanoscale; 2013 Nov; 5(21):10127-40. PubMed ID: 24056945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman Reporter-Coupled Ag(core)@Au(shell) Nanostars for in Vivo Improved Surface Enhanced Raman Scattering Imaging and Near-infrared-Triggered Photothermal Therapy in Breast Cancers.
    Zeng L; Pan Y; Wang S; Wang X; Zhao X; Ren W; Lu G; Wu A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16781-91. PubMed ID: 26204589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models.
    Register JK; Fales AM; Wang HN; Norton SJ; Cho EH; Boico A; Pradhan S; Kim J; Schroeder T; Wisniewski NA; Klitzman B; Vo-Dinh T
    Anal Bioanal Chem; 2015 Nov; 407(27):8215-24. PubMed ID: 26337748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic gold nanostars for multi-modality sensing and diagnostics.
    Liu Y; Yuan H; Kersey FR; Register JK; Parrott MC; Vo-Dinh T
    Sensors (Basel); 2015 Feb; 15(2):3706-20. PubMed ID: 25664431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer.
    Zhao L; Kim TH; Kim HW; Ahn JC; Kim SY
    Acta Biomater; 2015 Jul; 20():155-164. PubMed ID: 25848726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars.
    Su Q; Ma X; Dong J; Jiang C; Qian W
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1873-9. PubMed ID: 21528839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Plasmonic Gold Nanostar Theranostic Probe for In Vivo Tumor Imaging and Photothermal Therapy.
    Liu Y; Ashton JR; Moding EJ; Yuan H; Register JK; Fales AM; Choi J; Whitley MJ; Zhao X; Qi Y; Ma Y; Vaidyanathan G; Zalutsky MR; Kirsch DG; Badea CT; Vo-Dinh T
    Theranostics; 2015; 5(9):946-60. PubMed ID: 26155311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular and Cellular Detection by SERS-Active Plasmonic Nanostructures.
    Wu D; Chen Y; Hou S; Fang W; Duan H
    Chembiochem; 2019 Oct; 20(19):2432-2441. PubMed ID: 30957950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Nanoprobes for in Vivo Multimodal Sensing and Bioimaging of MicroRNA within Plants.
    Crawford BM; Strobbia P; Wang HN; Zentella R; Boyanov MI; Pei ZM; Sun TP; Kemner KM; Vo-Dinh T
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7743-7754. PubMed ID: 30694650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indocyanine green-loaded gold nanostars for sensitive SERS imaging and subcellular monitoring of photothermal therapy.
    Chen J; Sheng Z; Li P; Wu M; Zhang N; Yu XF; Wang Y; Hu D; Zheng H; Wang GP
    Nanoscale; 2017 Aug; 9(33):11888-11901. PubMed ID: 28561825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review.
    Luo SC; Sivashanmugan K; Liao JD; Yao CK; Peng HC
    Biosens Bioelectron; 2014 Nov; 61():232-40. PubMed ID: 24892785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced graphene oxide-supported gold nanostars for improved SERS sensing and drug delivery.
    Wang Y; Polavarapu L; Liz-Marzán LM
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21798-805. PubMed ID: 24827538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe.
    Dinish US; Balasundaram G; Chang YT; Olivo M
    J Biophotonics; 2014 Nov; 7(11-12):956-65. PubMed ID: 23963680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable and reproducible construction of a SERS substrate and its sensing applications.
    Wen Y; Wang W; Zhang Z; Xu L; Du H; Zhang X; Song Y
    Nanoscale; 2013 Jan; 5(2):523-6. PubMed ID: 23223828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and robotization of ultrasensitive plasmonic nanosensors for molecule detection with Raman scattering.
    Xu X; Kim K; Liu C; Fan D
    Sensors (Basel); 2015 May; 15(5):10422-51. PubMed ID: 25946633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanosponges (AuNS): a versatile nanostructure for surface-enhanced Raman spectroscopic detection of small molecules and biomolecules.
    Wallace GQ; Zuin MS; Tabatabaei M; Gobbo P; Lagugné-Labarthet F; Workentin MS
    Analyst; 2015 Nov; 140(21):7278-82. PubMed ID: 26347904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of nanostars as a biocompatible tumor contrast agent: toward in vivo SERS imaging.
    D'Hollander A; Mathieu E; Jans H; Vande Velde G; Stakenborg T; Van Dorpe P; Himmelreich U; Lagae L
    Int J Nanomedicine; 2016; 11():3703-14. PubMed ID: 27536107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.