These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 25316677)

  • 21. snpEnrichR: analyzing co-localization of SNPs and their proxies in genomic regions.
    Nousiainen K; Kanduri K; Ricaño-Ponce I; Wijmenga C; Lahesmaa R; Kumar V; Lähdesmäki H
    Bioinformatics; 2018 Dec; 34(23):4112-4114. PubMed ID: 29878048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HAPRAP: a haplotype-based iterative method for statistical fine mapping using GWAS summary statistics.
    Zheng J; Rodriguez S; Laurin C; Baird D; Trela-Larsen L; Erzurumluoglu MA; Zheng Y; White J; Giambartolomei C; Zabaneh D; Morris R; Kumari M; Casas JP; Hingorani AD; ; Evans DM; Gaunt TR; Day IN
    Bioinformatics; 2017 Jan; 33(1):79-86. PubMed ID: 27591082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. i-GSEA4GWAS: a web server for identification of pathways/gene sets associated with traits by applying an improved gene set enrichment analysis to genome-wide association study.
    Zhang K; Cui S; Chang S; Zhang L; Wang J
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W90-5. PubMed ID: 20435672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SNPsea: an algorithm to identify cell types, tissues and pathways affected by risk loci.
    Slowikowski K; Hu X; Raychaudhuri S
    Bioinformatics; 2014 Sep; 30(17):2496-7. PubMed ID: 24813542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PANOGA: a web server for identification of SNP-targeted pathways from genome-wide association study data.
    Bakir-Gungor B; Egemen E; Sezerman OU
    Bioinformatics; 2014 May; 30(9):1287-9. PubMed ID: 24413675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A tool for selecting SNPs for association studies based on observed linkage disequilibrium patterns.
    De La Vega FM; Isaac HI; Scafe CR
    Pac Symp Biocomput; 2006; ():487-98. PubMed ID: 17094263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GenomeRunner web server: regulatory similarity and differences define the functional impact of SNP sets.
    Dozmorov MG; Cara LR; Giles CB; Wren JD
    Bioinformatics; 2016 Aug; 32(15):2256-63. PubMed ID: 27153607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The genomic signature of trait-associated variants.
    Kindt AS; Navarro P; Semple CA; Haley CS
    BMC Genomics; 2013 Feb; 14():108. PubMed ID: 23418889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. snpGeneSets: An R Package for Genome-Wide Study Annotation.
    Mei H; Li L; Jiang F; Simino J; Griswold M; Mosley T; Liu S
    G3 (Bethesda); 2016 Dec; 6(12):4087-4095. PubMed ID: 27807048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. snpXplorer: a web application to explore human SNP-associations and annotate SNP-sets.
    Tesi N; van der Lee S; Hulsman M; Holstege H; Reinders MJT
    Nucleic Acids Res; 2021 Jul; 49(W1):W603-W612. PubMed ID: 34048563
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive evaluation of disease- and trait-specific enrichment for eight functional elements among GWAS-identified variants.
    Markunas CA; Johnson EO; Hancock DB
    Hum Genet; 2017 Jul; 136(7):911-919. PubMed ID: 28567521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Data integration for functional annotation of regulatory single nucleotide polymorphisms associated with Alzheimer's disease susceptibility.
    Amber S; Zahid S
    Gene; 2018 Sep; 672():115-125. PubMed ID: 29883757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying disease-associated SNP clusters via contiguous outlier detection.
    Yang C; Zhou X; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2011 Sep; 27(18):2578-85. PubMed ID: 21784794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved methods for multi-trait fine mapping of pleiotropic risk loci.
    Kichaev G; Roytman M; Johnson R; Eskin E; Lindström S; Kraft P; Pasaniuc B
    Bioinformatics; 2017 Jan; 33(2):248-255. PubMed ID: 27663501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SNP mining porcine ESTs with MAVIANT, a novel tool for SNP evaluation and annotation.
    Panitz F; Stengaard H; Hornshøj H; Gorodkin J; Hedegaard J; Cirera S; Thomsen B; Madsen LB; Høj A; Vingborg RK; Zahn B; Wang X; Wang X; Wernersson R; Jørgensen CB; Scheibye-Knudsen K; Arvin T; Lumholdt S; Sawera M; Green T; Nielsen BJ; Havgaard JH; Brunak S; Fredholm M; Bendixen C
    Bioinformatics; 2007 Jul; 23(13):i387-91. PubMed ID: 17646321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. LDGIdb: a database of gene interactions inferred from long-range strong linkage disequilibrium between pairs of SNPs.
    Wang MC; Chen FC; Chen YZ; Huang YT; Chuang TJ
    BMC Res Notes; 2012 May; 5():212. PubMed ID: 22551073
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selecting Closely-Linked SNPs Based on Local Epistatic Effects for Haplotype Construction Improves Power of Association Mapping.
    Liu F; Schmidt RH; Reif JC; Jiang Y
    G3 (Bethesda); 2019 Dec; 9(12):4115-4126. PubMed ID: 31604824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Post genome-wide association studies functional characterization of prostate cancer risk loci.
    Jiang J; Cui W; Vongsangnak W; Hu G; Shen B
    BMC Genomics; 2013; 14 Suppl 8(Suppl 8):S9. PubMed ID: 24564736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SNPsyn: detection and exploration of SNP-SNP interactions.
    Curk T; Rot G; Zupan B
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W444-9. PubMed ID: 21576219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving the detection of pathways in genome-wide association studies by combined effects of SNPs from Linkage Disequilibrium blocks.
    Zhao H; Nyholt DR; Yang Y; Wang J; Yang Y
    Sci Rep; 2017 Jun; 7(1):3512. PubMed ID: 28615668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.