These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 25316677)

  • 41. Performance of a blockwise approach in variable selection using linkage disequilibrium information.
    Dehman A; Ambroise C; Neuvial P
    BMC Bioinformatics; 2015 May; 16():148. PubMed ID: 25951947
    [TBL] [Abstract][Full Text] [Related]  

  • 42. HAPGEN2: simulation of multiple disease SNPs.
    Su Z; Marchini J; Donnelly P
    Bioinformatics; 2011 Aug; 27(16):2304-5. PubMed ID: 21653516
    [TBL] [Abstract][Full Text] [Related]  

  • 43. GWAS quality score for evaluating associated regions in GWAS analyses.
    Awasthi S; Chen CY; Lam M; Huang H; Ripke S; Altar CA
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36651666
    [TBL] [Abstract][Full Text] [Related]  

  • 44. GWAS Integrator: a bioinformatics tool to explore human genetic associations reported in published genome-wide association studies.
    Yu W; Yesupriya A; Wulf A; Hindorff LA; Dowling N; Khoury MJ; Gwinn M
    Eur J Hum Genet; 2011 Oct; 19(10):1095-9. PubMed ID: 21610748
    [TBL] [Abstract][Full Text] [Related]  

  • 45. GenoWAP: GWAS signal prioritization through integrated analysis of genomic functional annotation.
    Lu Q; Yao X; Hu Y; Zhao H
    Bioinformatics; 2016 Feb; 32(4):542-8. PubMed ID: 26504140
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Increasing power of genome-wide association studies by collecting additional single-nucleotide polymorphisms.
    Kostem E; Lozano JA; Eskin E
    Genetics; 2011 Jun; 188(2):449-60. PubMed ID: 21467568
    [TBL] [Abstract][Full Text] [Related]  

  • 47. GIGSEA: genotype imputed gene set enrichment analysis using GWAS summary level data.
    Zhu S; Qian T; Hoshida Y; Shen Y; Yu J; Hao K
    Bioinformatics; 2019 Jan; 35(1):160-163. PubMed ID: 30010968
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-plant GWAS coupled with bulk segregant analysis allows rapid identification and corroboration of plant-height candidate SNPs.
    Gyawali A; Shrestha V; Guill KE; Flint-Garcia S; Beissinger TM
    BMC Plant Biol; 2019 Oct; 19(1):412. PubMed ID: 31590656
    [TBL] [Abstract][Full Text] [Related]  

  • 49. gpart: human genome partitioning and visualization of high-density SNP data by identifying haplotype blocks.
    Kim SA; Brossard M; Roshandel D; Paterson AD; Bull SB; Yoo YJ
    Bioinformatics; 2019 Nov; 35(21):4419-4421. PubMed ID: 31070701
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In-depth annotation of SNPs arising from resequencing projects using NGS-SNP.
    Grant JR; Arantes AS; Liao X; Stothard P
    Bioinformatics; 2011 Aug; 27(16):2300-1. PubMed ID: 21697123
    [TBL] [Abstract][Full Text] [Related]  

  • 51. iFunMed: Integrative functional mediation analysis of GWAS and eQTL studies.
    Rojo C; Zhang Q; Keleş S
    Genet Epidemiol; 2019 Oct; 43(7):742-760. PubMed ID: 31328826
    [TBL] [Abstract][Full Text] [Related]  

  • 52. INRICH: interval-based enrichment analysis for genome-wide association studies.
    Lee PH; O'Dushlaine C; Thomas B; Purcell SM
    Bioinformatics; 2012 Jul; 28(13):1797-9. PubMed ID: 22513993
    [TBL] [Abstract][Full Text] [Related]  

  • 53. TAMAL: an integrated approach to choosing SNPs for genetic studies of human complex traits.
    Hemminger BM; Saelim B; Sullivan PF
    Bioinformatics; 2006 Mar; 22(5):626-7. PubMed ID: 16418238
    [TBL] [Abstract][Full Text] [Related]  

  • 54. LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources.
    Karchin R; Diekhans M; Kelly L; Thomas DJ; Pieper U; Eswar N; Haussler D; Sali A
    Bioinformatics; 2005 Jun; 21(12):2814-20. PubMed ID: 15827081
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SPOT: a web-based tool for using biological databases to prioritize SNPs after a genome-wide association study.
    Saccone SF; Bolze R; Thomas P; Quan J; Mehta G; Deelman E; Tischfield JA; Rice JP
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W201-9. PubMed ID: 20529875
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon.
    Nimmakayala P; Levi A; Abburi L; Abburi VL; Tomason YR; Saminathan T; Vajja VG; Malkaram S; Reddy R; Wehner TC; Mitchell SE; Reddy UK
    BMC Genomics; 2014 Sep; 15(1):767. PubMed ID: 25196513
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome-wide association studies for agronomical traits in a world wide spring barley collection.
    Pasam RK; Sharma R; Malosetti M; van Eeuwijk FA; Haseneyer G; Kilian B; Graner A
    BMC Plant Biol; 2012 Jan; 12():16. PubMed ID: 22284310
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combining functional and linkage disequilibrium information in the selection of tag SNPs.
    Sham PC; Ao SI; Kwan JS; Kao P; Cheung F; Fong PY; Ng MK
    Bioinformatics; 2007 Jan; 23(1):129-31. PubMed ID: 17060359
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Variation of gene-based SNPs and linkage disequilibrium patterns in the human genome.
    Tsunoda T; Lathrop GM; Sekine A; Yamada R; Takahashi A; Ohnishi Y; Tanaka T; Nakamura Y
    Hum Mol Genet; 2004 Aug; 13(15):1623-32. PubMed ID: 15190013
    [TBL] [Abstract][Full Text] [Related]  

  • 60. traseR: an R package for performing trait-associated SNP enrichment analysis in genomic intervals.
    Chen L; Qin ZS
    Bioinformatics; 2016 Apr; 32(8):1214-6. PubMed ID: 26685307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.