BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25317449)

  • 1. Addendum: independent optical excitation of distinct neural populations.
    Klapoetke NC; Murata Y; Kim SS; Pulver SR; Birdsey-Benson A; Cho YK; Morimoto TK; Chuong AS; Carpenter EJ; Tian Z; Wang J; Xie Y; Yan Z; Zhang Y; Chow BY; Surek B; Melkonian M; Jayaraman V; Constantine-Paton M; Wong GK; Edward S Boyden ES
    Nat Methods; 2014 Sep; 11(9):972. PubMed ID: 25317449
    [No Abstract]   [Full Text] [Related]  

  • 2. Independent optical excitation of distinct neural populations.
    Klapoetke NC; Murata Y; Kim SS; Pulver SR; Birdsey-Benson A; Cho YK; Morimoto TK; Chuong AS; Carpenter EJ; Tian Z; Wang J; Xie Y; Yan Z; Zhang Y; Chow BY; Surek B; Melkonian M; Jayaraman V; Constantine-Paton M; Wong GK; Boyden ES
    Nat Methods; 2014 Mar; 11(3):338-46. PubMed ID: 24509633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian entrainment to red light in Drosophila: requirement of Rhodopsin 1 and Rhodopsin 6.
    Hanai S; Hamasaka Y; Ishida N
    Neuroreport; 2008 Sep; 19(14):1441-4. PubMed ID: 18766027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship.
    Inagaki HK; Jung Y; Hoopfer ED; Wong AM; Mishra N; Lin JY; Tsien RY; Anderson DJ
    Nat Methods; 2014 Mar; 11(3):325-32. PubMed ID: 24363022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using optogenetics to assess neuroendocrine modulation of heart rate in Drosophila melanogaster larvae.
    Malloy C; Sifers J; Mikos A; Samadi A; Omar A; Hermanns C; Cooper RL
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Oct; 203(10):791-806. PubMed ID: 28612236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic control of fly optomotor responses.
    Haikala V; Joesch M; Borst A; Mauss AS
    J Neurosci; 2013 Aug; 33(34):13927-34. PubMed ID: 23966712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetics turns 10.
    Perkel JM
    Biotechniques; 2014 Jul; 57(1):8-11. PubMed ID: 25005688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic manipulation of neural circuits and behavior in Drosophila larvae.
    Honjo K; Hwang RY; Tracey WD
    Nat Protoc; 2012 Jul; 7(8):1470-8. PubMed ID: 22790083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling the behaviour of Drosophila melanogaster via smartphone optogenetics.
    Meloni I; Sachidanandan D; Thum AS; Kittel RJ; Murawski C
    Sci Rep; 2020 Oct; 10(1):17614. PubMed ID: 33077824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in
    Wang Q; Fan H; Li F; Skeeters SS; Krishnamurthy VV; Song Y; Zhang K
    Elife; 2020 Oct; 9():. PubMed ID: 33021199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell biology. Rhodopsin as thermosensor?
    Minke B; Peters M
    Science; 2011 Mar; 331(6022):1272-3. PubMed ID: 21393531
    [No Abstract]   [Full Text] [Related]  

  • 13. Maintenance of Rhodopsin levels in Drosophila photoreceptor and phototransduction requires Protein Kinase D.
    Ashe S; Yadav S
    Fly (Austin); 2018; 12(3-4):164-173. PubMed ID: 30663936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The motor function of Drosophila melanogaster myosin-5 is activated by calcium and cargo-binding protein dRab11.
    Ji HH; Zhang HM; Shen M; Yao LL; Li XD
    Biochem J; 2015 Jul; 469(1):135-44. PubMed ID: 25940004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feedback from rhodopsin controls rhodopsin exclusion in Drosophila photoreceptors.
    Vasiliauskas D; Mazzoni EO; Sprecher SG; Brodetskiy K; Johnston RJ; Lidder P; Vogt N; Celik A; Desplan C
    Nature; 2011 Oct; 479(7371):108-12. PubMed ID: 21983964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photic input pathways that mediate the Drosophila larval response to light and circadian rhythmicity are developmentally related but functionally distinct.
    Hassan J; Iyengar B; Scantlebury N; Rodriguez Moncalvo V; Campos AR
    J Comp Neurol; 2005 Jan; 481(3):266-75. PubMed ID: 15593374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe.
    McAlinden N; Gu E; Dawson MD; Sakata S; Mathieson K
    Front Neural Circuits; 2015; 9():25. PubMed ID: 26074778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature and Sweet Taste Integration in Drosophila.
    Li Q; DeBeaubien NA; Sokabe T; Montell C
    Curr Biol; 2020 Jun; 30(11):2051-2067.e5. PubMed ID: 32330421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila Rhodopsin 7 can partially replace the structural role of Rhodopsin 1, but not its physiological function.
    Grebler R; Kistenpfennig C; Rieger D; Bentrop J; Schneuwly S; Senthilan PR; Helfrich-Förster C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Aug; 203(8):649-659. PubMed ID: 28500442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast-Scan Cyclic Voltammetry (FSCV) Detection of Endogenous Octopamine in Drosophila melanogaster Ventral Nerve Cord.
    Pyakurel P; Privman Champaloux E; Venton BJ
    ACS Chem Neurosci; 2016 Aug; 7(8):1112-9. PubMed ID: 27326831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.