These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 25317484)
1. Ion permeability of polydopamine films revealed using a Prussian blue-based electrochemical method. Gao B; Su L; Tong Y; Guan M; Zhang X J Phys Chem B; 2014 Nov; 118(44):12781-7. PubMed ID: 25317484 [TBL] [Abstract][Full Text] [Related]
2. Current control by electrode coatings formed by polymerization of dopamine at prussian blue-modified electrodes. Gao B; Su L; Yang H; Shu T; Zhang X Analyst; 2016 Mar; 141(6):2067-71. PubMed ID: 26876689 [TBL] [Abstract][Full Text] [Related]
3. Tunable synthesis of Prussian Blue in exponentially growing polyelectrolyte multilayer films. Laugel N; Boulmedais F; El Haitami AE; Rabu P; Rogez G; Voegel JC; Schaaf P; Ball V Langmuir; 2009 Dec; 25(24):14030-6. PubMed ID: 19678659 [TBL] [Abstract][Full Text] [Related]
4. Surfactant-promoted Prussian Blue-modified carbon electrodes: enhancement of electro-deposition step, stabilization, electrochemical properties and application to lactate microbiosensors for the neurosciences. Salazar P; Martín M; O'Neill RD; Roche R; González-Mora JL Colloids Surf B Biointerfaces; 2012 Apr; 92():180-9. PubMed ID: 22192612 [TBL] [Abstract][Full Text] [Related]
5. Composite films of polydopamine-Alcian Blue for colored coating with new physical properties. Ponzio F; Bour J; Ball V J Colloid Interface Sci; 2015 Dec; 459():29-35. PubMed ID: 26263492 [TBL] [Abstract][Full Text] [Related]
6. Electrochemically driven, electrode-addressable formation of functionalized polydopamine films for neural interfaces. Kang K; Lee S; Kim R; Choi IS; Nam Y Angew Chem Int Ed Engl; 2012 Dec; 51(52):13101-4. PubMed ID: 23161792 [TBL] [Abstract][Full Text] [Related]
7. In Situ Structural Elucidation and Selective Pb Shalini Devi KS; Jacob S; Senthil Kumar A Langmuir; 2018 Jun; 34(24):7048-7058. PubMed ID: 29792028 [TBL] [Abstract][Full Text] [Related]
8. Multilayer assembly of Prussian blue nanoclusters and enzyme-immobilized poly(toluidine blue) films and its application in glucose biosensor construction. Zhang D; Zhang K; Yao YL; Xia XH; Chen HY Langmuir; 2004 Aug; 20(17):7303-7. PubMed ID: 15301519 [TBL] [Abstract][Full Text] [Related]
9. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Jiang J; Zhu L; Zhu L; Zhu B; Xu Y Langmuir; 2011 Dec; 27(23):14180-7. PubMed ID: 22011109 [TBL] [Abstract][Full Text] [Related]
10. Use of surface plasmon resonance to investigate lateral wall deposition kinetics and properties of polydopamine films. Li H; Cui D; Cai H; Zhang L; Chen X; Sun J; Chao Y Biosens Bioelectron; 2013 Mar; 41():809-14. PubMed ID: 23140668 [TBL] [Abstract][Full Text] [Related]
11. Controllable synthesis of rare earth (Gd Xu M; Chi B; Han Z; He Y; Tian F; Xu Z; Li L; Wang J Dalton Trans; 2020 Sep; 49(35):12327-12337. PubMed ID: 32844843 [TBL] [Abstract][Full Text] [Related]
12. Stability improvement of Prussian blue in nonacidic solutions via an electrochemical post-treatment method and the shape evolution of Prussian blue from nanospheres to nanocubes. Wang Z; Yang H; Gao B; Tong Y; Zhang X; Su L Analyst; 2014 Mar; 139(5):1127-33. PubMed ID: 24416762 [TBL] [Abstract][Full Text] [Related]
13. Well-dispersed Pt nanoparticles on polydopamine-coated ordered mesoporous carbons and their electrocatalytic application. Yan L; Bo X; Zhu D; Guo L Talanta; 2014 Mar; 120():304-11. PubMed ID: 24468374 [TBL] [Abstract][Full Text] [Related]
14. Protein immobilization and fluorescence quenching on polydopamine thin films. Chen D; Zhao L; Hu W J Colloid Interface Sci; 2016 Sep; 477():123-30. PubMed ID: 27254254 [TBL] [Abstract][Full Text] [Related]
15. Facile synthesis of free-standing polymer brush films based on a colorless polydopamine thin layer. Kohri M; Shinoda Y; Kohma H; Nannichi Y; Yamauchi M; Yagai S; Kojima T; Taniguchi T; Kishikawa K Macromol Rapid Commun; 2013 Aug; 34(15):1220-4. PubMed ID: 23908127 [TBL] [Abstract][Full Text] [Related]
16. Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Zangmeister RA; Morris TA; Tarlov MJ Langmuir; 2013 Jul; 29(27):8619-28. PubMed ID: 23750451 [TBL] [Abstract][Full Text] [Related]
17. A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries. Sun T; Li ZJ; Wang HG; Bao D; Meng FL; Zhang XB Angew Chem Int Ed Engl; 2016 Aug; 55(36):10662-6. PubMed ID: 27485314 [TBL] [Abstract][Full Text] [Related]
18. Formation of polydopamine nanofibers with the aid of folic acid. Yu X; Fan H; Wang L; Jin Z Angew Chem Int Ed Engl; 2014 Nov; 53(46):12600-4. PubMed ID: 25146565 [TBL] [Abstract][Full Text] [Related]
19. Highly sensitive molecularly imprinted electrochemical sensor based on the double amplification by an inorganic Prussian blue catalytic polymer and the enzymatic effect of glucose oxidase. Li J; Li Y; Zhang Y; Wei G Anal Chem; 2012 Feb; 84(4):1888-93. PubMed ID: 22242638 [TBL] [Abstract][Full Text] [Related]
20. Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: insights in the polydopamine deposition mechanism. Ball V; Del Frari D; Toniazzo V; Ruch D J Colloid Interface Sci; 2012 Nov; 386(1):366-72. PubMed ID: 22874639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]