These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25317542)

  • 21. Nano-SAR Modeling for Predicting the Cytotoxicity of Metal Oxide Nanoparticles to PaCa2.
    Shi H; Pan Y; Yang F; Cao J; Tan X; Yuan B; Jiang J
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles.
    Hu X; Cook S; Wang P; Hwang HM
    Sci Total Environ; 2009 Apr; 407(8):3070-2. PubMed ID: 19215968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using quasi-SMILES for the predictive modeling of the safety of 574 metal oxide nanoparticles measured in different experimental conditions.
    Toropova AP; Toropov AA; Leszczynski J; Sizochenko N
    Environ Toxicol Pharmacol; 2021 Aug; 86():103665. PubMed ID: 33895354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials.
    Lai DY
    Food Chem Toxicol; 2015 Nov; 85():120-6. PubMed ID: 26111809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus.
    Baek YW; An YJ
    Sci Total Environ; 2011 Mar; 409(8):1603-8. PubMed ID: 21310463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity.
    Silva T; Pokhrel LR; Dubey B; Tolaymat TM; Maier KJ; Liu X
    Sci Total Environ; 2014 Jan; 468-469():968-76. PubMed ID: 24091120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro assessment of cobalt oxide particle toxicity: identifying and circumventing interference.
    Darolles C; Sage N; Armengaud J; Malard V
    Toxicol In Vitro; 2013 Sep; 27(6):1699-710. PubMed ID: 23624240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions.
    Toropova AP; Toropov AA; Rallo R; Leszczynska D; Leszczynski J
    Ecotoxicol Environ Saf; 2015 Feb; 112():39-45. PubMed ID: 25463851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models.
    Sizochenko N; Gajewicz A; Leszczynski J; Puzyn T
    Nanoscale; 2016 Apr; 8(13):7203-8. PubMed ID: 26972917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toxicological study of metal and metal oxide nanoparticles in zebrafish.
    Bai C; Tang M
    J Appl Toxicol; 2020 Jan; 40(1):37-63. PubMed ID: 31884684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling of Interactions between the Zebrafish Hatching Enzyme ZHE1 and A Series of Metal Oxide Nanoparticles: Nano-QSAR and Causal Analysis of Inactivation Mechanisms.
    Sizochenko N; Leszczynska D; Leszczynski J
    Nanomaterials (Basel); 2017 Oct; 7(10):. PubMed ID: 29035311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlation intensity index: mathematical modeling of cytotoxicity of metal oxide nanoparticles.
    Ahmadi S; Toropova AP; Toropov AA
    Nanotoxicology; 2020 Oct; 14(8):1118-1126. PubMed ID: 32877261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of Toxicity Ranking for Metal Oxide Nanoparticles via an in Vitro Dosimetry Model.
    Liu R; Liu HH; Ji Z; Chang CH; Xia T; Nel AE; Cohen Y
    ACS Nano; 2015 Sep; 9(9):9303-13. PubMed ID: 26284985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOx ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells.
    Roy J; Roy K
    Nanotoxicology; 2022 Jun; 16(5):629-644. PubMed ID: 36260491
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting the toxicities of metal oxide nanoparticles based on support vector regression with a residual bootstrapping method.
    Zhai X; Chen M; Lu W
    Toxicol Mech Methods; 2018 Jul; 28(6):440-449. PubMed ID: 29644916
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comment on "Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models" by N. Sizochenko, A. Gajewicz, J. Leszczynski and T. Puzyn, Nanoscale, 2016, 8, 7203.
    Tasi DA; Csontos J; Nagy B; Kónya Z; Tasi G
    Nanoscale; 2018 Nov; 10(44):20863-20866. PubMed ID: 30325387
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Kar S; Pathakoti K; Leszczynska D; Tchounwou PB; Leszczynski J
    Nanotoxicology; 2022 Jun; 16(5):566-579. PubMed ID: 36149909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo nanotoxicity assays in plant models.
    Kumari M; Ernest V; Mukherjee A; Chandrasekaran N
    Methods Mol Biol; 2012; 926():399-410. PubMed ID: 22975978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relating nanomaterial properties and microbial toxicity.
    Suresh AK; Pelletier DA; Doktycz MJ
    Nanoscale; 2013 Jan; 5(2):463-74. PubMed ID: 23203029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating the cytotoxicity of a large pool of metal oxide nanoparticles to Escherichia coli: Mechanistic understanding through In Vitro and In Silico studies.
    Kar S; Pathakoti K; Tchounwou PB; Leszczynska D; Leszczynski J
    Chemosphere; 2021 Feb; 264(Pt 1):128428. PubMed ID: 33022504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.